Skip to main content

Advertisement

Log in

Conservation of protists: is it needed at all?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Protists have scarcely been considered in traditional perspectives and strategies in environmental management and biodiversity conservation. This is a remarkable omission given that these tiny organisms are highly diverse, and have performed as key ecological players in evolutionary theatres for over a billion years of Earth history. Protists hold key roles in nearly all ecosystems, notably as participants in fluxes of energy and matter through foodwebs that centre on their predation on microbes. In spite of this, they have been largely ignored in conservation issues due to a widespread, naive belief that protists are ubiquitous and cosmopolitanously distributed. Nevertheless, recent research shows that many protists have markedly restricted distributions. These range from palaeoendemics (Gondwanan-Laurasian distribution) to local endemics. Our ignorance about the ultimate and proximate causes of such acute disparities in scale-dependent distributions of protists can be flagged as a singular reason to preserve these more cryptic participants in ecological and evolutionary dynamics. This argument is disturbing when one considers anthropogenic modifications of landscapes and the very poorly understood roles of protists in ecological processes in soils, not least in agroecolandscapes and hydrological systems. Major concerns include host specific symbiotic, symphoric and parasitic species which become extinct, unseen and largely unknown, alongside their metazoan hosts; change or loss of habitats; massive change or loss of type localities; and losses of unique genetic resources and evolutionary potential. These concerns are illustrated by examples to argue that conservation of protists should be integral to any strategy that traditionally targets vascular plants and animals. The ongoing decline in research capacity to inventory and classify protist diversity exemplifies a most acute symptom of the failures, at local, national and international levels, to support scientific responses to the biodiversity crisis. Responsible responses to these severe problems need to centre on the revival of natural history as the core discipline in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figs. 1–8
Fig. 9

Similar content being viewed by others

References

  • Andre HM, Noti M-I, LeBrun P (1994) The soil fauna: the last biotic frontier. Biodivers Conserv 3:45–56

    Google Scholar 

  • Arrow K, Bolin B, Costanza R et al (1995) Economic growth, carrying capacity, and the environment. Science 268:520–521

    PubMed  CAS  Google Scholar 

  • Baskin Y (1997) The work of nature: how the diversity of life sustains. Island Press, Washington DC

    Google Scholar 

  • Beck E (eds) (2002) Faszination Lebenswissenschaften. Wiley-VCH, Weinheim

    Google Scholar 

  • Behan-Pelletier V, Newton G (1999) Linking soil biodiversity and ecosystem function – the taxonomic dilemma. Bioscience 49:149–153

    Google Scholar 

  • Bengtson S (2002) Origins and early evolution of predation. In: Kowalewski M, Kelley PH (eds) The fossil record of predation. The Paleontological Society Papers 8. The Paleontological Society, pp 289–317

  • Berger H, Al-Rasheid KAS, Foissner W (2006) Morphology and cell division of Saudithrix terricola n. gen., n. sp., a large, stichotrich ciliate from Saudi Arabia. J Eukaryot Microbiol 53:260–268

    PubMed  Google Scholar 

  • Brain CK (1981) The hunters or the hunted? An introduction to African cave taphonomy. Univ Chicago Press, Chicago

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity: an evolutionary voyage of discovery. Univ Chicago Press, Chicago

    Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin Co., Boston

    Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and earth history: stasis and revolution. Phil Trans R Soc B 361:969–1006

    PubMed  CAS  Google Scholar 

  • Clarke JDA (2003) The limits of regolith: a planetary scale perspective. In: Roach IC (eds) Advances in regolith. CRC, LEME, pp 74–77

  • Corliss JO (2000) Biodiversity, classification, and numbers of species of protists. In: Raven PH, Williams T (eds) Nature and human society. The quest for a sustainable world. National Academy Press, Washington, pp 130–155

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Cotterill FPD (1997) The Second Alexandrian Tragedy, and the fundamental relationship between biological collections and scientific knowledge. In: Nudds JR, Pettitt CW (eds) The value and valuation of natural science collections. Geological Society, London, pp 227–241

    Google Scholar 

  • Cotterill FPD (1999) Toward exorcism of the ghost of W.T. Thistleton-Dyer: a comment on “overduplication” and the scientific properties, uses and values of natural science specimens. Taxon 48:35–39

    Google Scholar 

  • Cotterill FPD (2002) The future of natural science collections into the 21st century. Conferencia de clausura. In: Actas del I Simposio sobre el Patrimonio Natural en las Colecciones Públicas en España (Vitoria, 25–27 Septiembre 2001). Departamento de Cultura, Diputación Foral de Alava, Vitoria, pp 237–282

  • Cracraft J (1996) Systematics, biodiversity science, and the conservation of the Earth’s biota. Verh Dt Zool Ges 89:41–47

    Google Scholar 

  • Cracraft J (2002) The seven great questions of systematic biology: an essential foundation for conservation and sustainable use of biodiversity. Ann Miss Bot Gard 89:127–144

    Google Scholar 

  • Cresswell ID, Bridgewater P (2000) The global taxonomic initiative – quo vadis? Biol Int 38:12–16

    Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington DC

    Google Scholar 

  • DeLeo PC, Baveye P (1997) Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiol J 14:127–149

    Google Scholar 

  • Donoghue MJ, Alverson WS (2000) A new age of discovery. Ann Miss Bot Gard 87:110–126

    Google Scholar 

  • Eisen JA (2007) Environmental genome shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 82:384–388

    Google Scholar 

  • Erwin TL (1991) An evolutionary basis for conservation strategies. Science 253:750–752

    PubMed  Google Scholar 

  • Faith DP (1994) Genetic diversity and taxonomic priorities for conservation. Biol Conserv 68:69–74

    Google Scholar 

  • Faith DP, Trueman JWH (2001) Towards an inclusive philosophy for phylogenetic inference. Syst Biol 50:331–350

    PubMed  CAS  Google Scholar 

  • Faith DP, Walker PA (1996) How do indicator groups provide information about the relative biodiversity of different sets of areas? On hotspots, complementarity and pattern-based approaches. Biodivers Lett 3:18–25

    Google Scholar 

  • Fenchel T (1987) Ecology of protozoa. Springer, Berlin and Tokyo

    Google Scholar 

  • Finlay BJ, Corliss JO, Esteban G et al (1996) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71:221–237

    Google Scholar 

  • Foissner W (1987) Soil protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Prog Protistol 2:69–212

    Google Scholar 

  • Foissner W (1994) Kommentar zur Gefährdungssituation der Einzeller (Protozoa). In: Gepp J (ed) Rote Listen gefährdeter Tiere Österreichs, Band 2. Moser, Graz, pp 317–319

    Google Scholar 

  • Foissner W (1999a) Description of two new, mycophagous soil ciliates (Ciliophora, Colpodea): Fungiphrya strobli n. g., n. sp. and Grossglockneria ovata n. sp. J Eukaryot Microbiol 46:34–42

    Google Scholar 

  • Foissner W (1999b) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    Article  PubMed  CAS  Google Scholar 

  • Foissner W (2002) Morphology and ontogenesis of Bromeliophyra brasiliensis gen. n., sp. n, a new ciliate (Protozoa: Ciliophora) from Brazilian tank bromeliads (Bromeliacae). Acta Protozool 42:55–70

    Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Foissner W (2007) Dispersal and biogeography of protists: recent advances. Jpn J Protozool 40:1–16

    Google Scholar 

  • Foissner W, Xu K (2007) Monograph of the Spathidiida (Ciliophora, Haptoria). Volume II: Spathidiidae and Pharyngospathidiidae. Monographiae biol (in preparation)

  • Foissner W, Berger H, Blatterer H et al (1995) Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems - Band IV: Gymnostomatea, Loxodes, Suctoria. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft 1/95:1–540

    Google Scholar 

  • Foissner W, Agatha S, Berger H (2002) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia 5:1–1459

    Google Scholar 

  • Foissner W, Strueder-Kypke M, van der Stay GWM et al (2003) Endemic ciliates (Protozoa, Ciliophora) from tank bromeliads (Bromeliacae): a combined morphological, molecular and ecological study. Eur J Protistol 39:365–372

    Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Google Scholar 

  • Gee H (1992) The objective case for conservation. Nature 357:639

    Google Scholar 

  • Ghiselin MT (1997) Metaphysics and the origin of species. State Univ New York, New York

    Google Scholar 

  • Gross L (2007) Untapped bounty: sampling the seas to survey microbial biodiversity. PLoS Biol 85:371–376

    Google Scholar 

  • Hallam A, Wignall P (1997) Mass extinctions and their aftermath. Oxford Univ Press, Oxford

    Google Scholar 

  • Hansen E (2000) Orchid fever: a horticultural tale of love, lust and lunacy. Pantheon Books, New York

    Google Scholar 

  • Hausmann K, Hülsmann N, Radek R (2003) Protistology. Schweizerbart, Berlin Stuttgart

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Herman SG (2002) Wildlife biology and natural history: time for a reunion. J Wildl Manage 66:933–946

    Google Scholar 

  • Heywood VH, Watson RT (1995) Global biodiversity assessment. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Hoagland KE (1996) The taxonomic impediment and the convention on biodiversity ASC News 24:61–62, 66–67

    Google Scholar 

  • Holldobler B, Wilson EO (1994) Journey to the ants: a story of scientific exploration. Harvard Univ Press, Cambridge, MA

    Google Scholar 

  • Ichise S, Morita T, Wakabayashi T et al (2004) Disappearance and its past distribution of the endemic protista Difflugia biwae Kawamura, 1918 in lake Biwa, Central Japan. Rep Shiga Pref Inst Pub Health & Environ Sci 39:57–63 (in Japanese)

    Google Scholar 

  • Janzen DH (1993) Taxonomy: universal and essential infrastructure for development and management of tropical wildland biodiversity. In: Sandlund OT, Schei PJ (eds) Norway/UNEP expert conference on biodiversity. NINA, Trondheim, pp 100–113

    Google Scholar 

  • Janzen DH (1998) Gardenification of wildland nature and the human footprint. Science 279:1312–1313

    CAS  Google Scholar 

  • Jenner RA (2006) Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney. Dev Genes Evol 216:385–394

    PubMed  Google Scholar 

  • Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–319

    PubMed  CAS  Google Scholar 

  • Kirkland-Berger J (2005) Mission possible: All-Species Foundation and the call for discovery. Proc Calif Acad Sci Suppl 56:114–118

    Google Scholar 

  • Kiy T (1997) Biotechnology of Protozoa. In: Abstracts of the 10th international congress of protozoology, Sydney

  • Krell F-T, Cranston PS (2004) Which side of the tree is more basal? Syst Entomol 29:279–281

    Google Scholar 

  • Kreutz M, Foissner W (2006) The Sphagnum ponds of Simmelried in Germany: a biodiversity hot-spot for microscopic organisms. Protozool Monogr 3:1–267

    Google Scholar 

  • Lambrecht FL (1985) Trypanosomes and hominid evolution. Bioscience 35:640–646

    Google Scholar 

  • Lange-Bertalot H (1997) A first ecological evaluation of the diatom flora in Central Europe. Species diversity, selective human interactions and the need of habitat protection. Lauterbornia 31:117–123

    Google Scholar 

  • Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32

    Google Scholar 

  • Margulis L, Chase D, Guerrero R (1986) Microbial communities: invisible to the scrutiny of naturalists, most microbial communities have escaped description. Bioscience 36:160–170

    PubMed  CAS  Google Scholar 

  • Matthes D, Guhl W (1975) Systematik, Anpassungen und Raumparasitismus auf Hydrophiliden lebender operculariformer Epistyliden. Arch Protistenk 117:110–186

    Google Scholar 

  • McGrath CL, Katz LA (2004) Genome diversity in microbial eukaryotes. Trends Ecol Evol 19:32–38

    PubMed  Google Scholar 

  • McKinney ML, Drake JA (eds) (1998) Biodiversity dynamics: turnover of populations, taxa and communities. Columbia Univ Press, New York

    Google Scholar 

  • Meffe G, Contributors (1997) Principles of conservation biology, 2nd edn. Sinauer Press, Sunderland

    Google Scholar 

  • Meine C, Knight RL (1999) The essential Aldo Leopold: quotations and commentaries. Univ Wisconsin Press, Wisconsin

    Google Scholar 

  • Moreira D, López-García P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    PubMed  CAS  Google Scholar 

  • Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    PubMed  CAS  Google Scholar 

  • Nilsson JR (1986) The African heterotrich ciliate, Stentor andreseni sp. nov., and S. amethystinus Leidy. Biol Skr Dan Vid Selsk 27:1–43

    Google Scholar 

  • Novarino G, Warren A, Kinner NE et al (1994) Protists from a sewage-contaminated aquifer on Cape Cod, Massachusetts. Geomicrobiol J 12:23–36

    Article  Google Scholar 

  • Ormond RFG, Gage JD, Angel MV (1997) Marine biodiversity: patterns and processes. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Palmer SR, Soulsby L, Simpson DIH (1998) Zoonoses: biology, clinical practice, and public health control. Oxford Univ Press, Oxford

    Google Scholar 

  • Pawar S (2003) Taxonomic chauvinism and the methodologically challenged. Bioscience 53:861–864

    Google Scholar 

  • Puytorac P de, Grain J, Mignot J-P (1987) Précis de protistologie. Boubée et Fondation Singer Polignac, Paris

    Google Scholar 

  • Reaka-Kudla ML, Wilson DE, Wilson EO (1997) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, Washington DC

    Google Scholar 

  • Richter DD, Markewitz D (1995) How deep is soil? Bioscience 45:600–609

    Google Scholar 

  • Rondon MR, Goodman RM, Handelsman J (1999) The Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17:403–409

    PubMed  CAS  Google Scholar 

  • Scheckenbach F, Wylezich C, Mylnikov AP et al (2006) Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates. Appl Environ Microbiol 72:6638–6643

    PubMed  CAS  Google Scholar 

  • Schmidly DJ (2005) What it means to be a naturalist and the future of natural history at American universities. J Mammal 86:449–456

    Google Scholar 

  • Schuessler A, Kluge M (2000) Geosiphon pyriforme, an endocytobiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The Mycota, vol 9. Springer, Berlin, pp 151–161

    Google Scholar 

  • Shayler HA, Siver PA (2004) Description of a new species of the diatom genus Brachysira (Bacillariophyta), Brachysira gravida sp nov from the Ocala National Forest, Florida, USA. Nova Hedwigia 78:399–409

    Google Scholar 

  • Smith F (1996) Biological diversity, ecosystem stability and economic development. Ecol Econ 16:191–203

    Google Scholar 

  • Sorokin YI (1999) Aquatic microbial ecology. Backhuys Pub, Leiden

    Google Scholar 

  • Staley JT (1997) Biodiversity: are microbial species threatened? Comment. Curr Opin Biotechnol 8:340–345

    PubMed  CAS  Google Scholar 

  • Stork N (1997) Measuring global biodiversity and its decline. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, Washington DC, pp 41–68

    Google Scholar 

  • Systematics Agenda 2000 (1994) Systematics Agenda 2000. Charting the biosphere. Technical report. Amer Mus Nat Hist, New York

    Google Scholar 

  • Tilman D, Naeem S, Knops J et al (1997) Biodiversity and ecosystem properties. Science 278:1866–1867

    CAS  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?–Systematics and the agony of choice. Biol Conserv 55:235–254

    Google Scholar 

  • Venter JC, Levy S, Remington K et al (2003) Massive parallelism, randomness and genomic advances. Nat Genet 33:219–227

    PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    PubMed  CAS  Google Scholar 

  • Von der Heyden S, Cavalier-Smith T (2005) Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55:2605–2621

    PubMed  Google Scholar 

  • Wall DH (1999) Soil biodiversity – life in soil. In: Cracraft J, Grifo F (eds) The living planet in crisis: biodiversity science and policy. Columbia Univ Press, New York, pp 124–128

    Google Scholar 

  • Wells SM, Pyle RM, Collins NM (1983) The IUCN invertebrate red data book. Gresham Press, Old Woking, Surrey, UK

    Google Scholar 

  • Western D, Pearl M (1989) Conservation for the twenty-first century. Oxford Univ Press, Oxford

    Google Scholar 

  • Westman WE (1977) How much are nature’s services worth? Science 197:960–964

    PubMed  Google Scholar 

  • Wewalka G (1984) Rote Liste der gefährdeten Schwimmkäfer Österreichs (Dytiscidae, Coleoptera). In: Gepp J (ed) Rote Listen gefährdeter Tiere Österreichs, 2nd edn. BM Gesundheit und Umweltschutz, Wien, pp 123–126

    Google Scholar 

  • Wheeler QD (1995) Systematics, the scientific basis for inventories of biodiversity. Biodivers Conserv 4:476–489

    Google Scholar 

  • Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Phil Trans Roy Soc Lond 359:571–583

    Google Scholar 

  • Wilson EO (1984) Biophilia: the human bond with other species. Harvard Univ Press, Cambridge MA

    Google Scholar 

  • Wilson EO (1989) Bedrohung des Artenreichtums. Spektrum der Wissenschaft 11:88–95

    Google Scholar 

  • Wilson EO (2003) Encyclopedia of life. Trends Ecol Evol 18:77–80

    Google Scholar 

  • Yang J, Shen Y (2005) Morphology, biometry and distribution of Difflugia biwae Kawamura 1918 (Protozoa: Rhizopoda). Acta Protozool 44:103–111

    Google Scholar 

  • Ziegler W, Bode H-J, Mollenhauer D et al (1997) Biodiversitätsforschung. Ihre Bedeutung für Wissenschaft, Anwendung und Ausbildung. Fakten, Argumente und Perspektiven. Kleine Senckenberg-Reihe 26:1–68

    Google Scholar 

Download references

Acknowledgements

Supported by the Austrian Science Foundation (FWF, P-15017 and P-19699-B17) and by the King Saud University, Saudi Arabia. Cotterill gratefully thanks essential support for interdisciplinary research from the Claude Leon Foundation, Cape Town, and a Biodiversity Leadership Award from the Bay Foundation, and the Josephine Bay Paul and C. Michael Paul Foundations, New York City. This is AEON Contribution No 0030. The technical assistance of Mag. Gudrun Fuss is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Foissner.

Additional information

F. P. D. Cotterill: Formerly Principal Curator of Vertebrates, Natural History Museum of Zimbabwe, P.O. Box 240, Bulawayo, Zimbabwe

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotterill, F.P.D., Al-Rasheid, K. & Foissner, W. Conservation of protists: is it needed at all?. Biodivers Conserv 17, 427–443 (2008). https://doi.org/10.1007/s10531-007-9261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9261-8

Keywords

Navigation