Skip to main content
Log in

Hydrogel composite of lanthanum and Halorubrum ejinoor sp. cell lysate as an adsorbing material

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

Although halophilic archaea are rich in natural environments, their biotechnological applications are not as prevalent as those of other extremophiles, such as thermophiles and alkaliphiles. This study presents an simple method to prepare a hydrogel composite using crude cell lysate of a halophilic archaea, Halorubrum ejinoor sp. (H.e.) which was isolated from a saline lake in Inner Mongolia, China. Furthermore, formation mechanism and potential applications of the hydrogel as an adsorbing material are discussed.

Results

Halorubrum ejinoor sp. (H.e.) cell lysate was firstly prepared by adding pure water onto the H.e. cell pellet, followed by a short incubation at 60 °C. The cell lysate was injected into different metal ion (or H+) solutions to obtain the hydrogel composite. It was observed that H+, Fe3+, La3+, Cu2+, and Ca2+ induced gelation of the cell lysate, while Fe2+, Co2+, Ni2+, Mg2+, Na+, and K+ did not. DNA and extracellular polysaccharides (EPS) in the H.e. cell lysate were found to be responsible for the gelation reaction. These results suggest that DNA and EPS should be crosslinked by metal ions (or H+) and form a networked structure in which the metal ion (or H+) serves as an anchor point. Potential application of the hydrogel as an adsorbing material was explored using La3+-induced H.e. hydrogel composite. The hydrogel composite can adsorb the fluoride, phosphate and DNA-binding carcinogenic agents, such as acridine orange.

Conclusions

The simplicity and cost effectiveness of the preparation method might make H.e. hydrogel a promising adsorbing material. This work is expected to expand the technical applications of haloarchaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    PubMed  CAS  Google Scholar 

  • Aljohny BO (2015) Halophilic bacterium—a review of new studies. Biosci Biotechnol Res Asia 12:2061–2069

    Google Scholar 

  • Almanassra IW, Kochkodan V, McKay G, Atieh MA, Al-Ansari T (2021) Review of phosphate removal from water by carbonaceous sorbents. J Environ Manag 287:112245

    CAS  Google Scholar 

  • Bacelo H, Pintor AMA, Santos SCR, Boaventura RAR, Botelho CMS (2020) Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chem Eng J 381:122566

    CAS  Google Scholar 

  • Bansiwal A, Thakre D, Labhshetwar N, Meshram S, Rayalu S (2009) Fluoride removal using lanthanum incorporated chitosan beads. Colloids Surf B 74:216–224

    CAS  Google Scholar 

  • Biswas G, Kumari M, Adhikari K, Dutta S (2017) A critical review on occurrence of fluoride and its removal through adsorption with an emphasis on natural minerals. Curr Pollut Rep 3:104–119

    CAS  Google Scholar 

  • Chaoluomeng, Dai G, Kikukawa T, Ihara K, Iwasa T (2015) Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China. Photochem Photobiol Sci 14:1974–1982

  • Chowdhury S, Chowdhury IR, Kabir F, Mazumder MAJ, Zahir MH, Alhooshani K (2019) Alginate-based biotechnology: a review on the arsenic removal technologies and future possibilities. J Water Supply Res Technol-AQUA 68:369–389

    Google Scholar 

  • Crini G, Badot P (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    CAS  Google Scholar 

  • Dhakal RP, Ghimire KN, Inoue K, Yano M, Makino K (2005) Acidic polysaccharide gels for selective adsorption of lead(II) ion. Sep Purif Technol 42:219–225

    CAS  Google Scholar 

  • Dobashi T, Furusawa K, Kita E, Minamisawa Y, Yamamoto T (2007) DNA liquid-crystalline gel as adsorbent of carcinogenic agent. Langmuir 23:1303–1306

    PubMed  CAS  Google Scholar 

  • Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels a review. Chem Eng J 243:572–590

    CAS  Google Scholar 

  • Fang L, Ghimire KN, Kuriyama M, Inoue K, Makino K (2003) Removal of fluoride using some lanthanum(III)-loaded adsorbents with different functional groups and polymer matrices. J Chem Technol Biotechnol 78:1038–1047

    CAS  Google Scholar 

  • Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl FW, Stanlotter H (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Rev Environ Sci Biotechnol 5:203–218

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fimbres-Olivarría D, López-Elías JA, Carvajal-Millán E, Márquez-Escalante JA, Martínez-Córdova LR, Miranda-Baeza A, Enríquez-Ocaña F, Valdéz-Holguín JE, Brown-Bojórquez F (2016) Navicula sp. sulfated polysaccharide gels induced by Fe(III): rheology and microstructure. Int J Mol Sci 17(8):1238

    PubMed Central  Google Scholar 

  • Furusawa K, Wakamatsu M, Dobashi T, Yamamoto T (2007) Adsorption kinetics of carcinogens to DNA liquid crystalline gel beads. Langmuir 23:10081–10087

    PubMed  CAS  Google Scholar 

  • Gerente C, Lee VKC, Cloirec PL, Mckay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127

    CAS  Google Scholar 

  • Haghseresht F, Wang S, Do DD (2009) A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Appl Clay Sci 46:369–375

    CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    PubMed  PubMed Central  CAS  Google Scholar 

  • Horvat G, Fajfar T, Uzunalic AP, Knez Ž, Novak Z (2017) Thermal properties of polysaccharide aerogels. J Therm Anal Calorim 127:363–370

    CAS  Google Scholar 

  • Hu Y, Zhu Y, Zhang Y, Lin T, Zeng G, Zhang S, Wang Y, He W, Zhang M, Long H (2019) An efficient adsorbent: simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption. Bioresour Technol 288:121511

    PubMed  CAS  Google Scholar 

  • Hu C, Lu W, Mata A, Nishinari K, Fang Y (2021) Ions-induced gelation of alginate: mechanisms and applications. Int J Biol Macromol 177:578–588

    PubMed  CAS  Google Scholar 

  • Hubbe MA, Azizian S, Douven S (2019) Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review. BioResources 14:7582–7626

    Google Scholar 

  • Kamble SP, Jagtap S, Labhsetwar N, Thakare D, Godfrey S, Devotta S, Rayalu S (2007) Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chem Eng J 129:173–180

    CAS  Google Scholar 

  • Kenney JPL, Fein JB (2011) Importance of extracellular polysaccharides on proton and Cd binding to bacterial biomass: a comparative study. Chem Geol 286:109–117

    CAS  Google Scholar 

  • Kluczka J, Gnus M, Kazek-Kęsik A, Dudek G (2018) Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions. Polymer 150:109–118

    CAS  Google Scholar 

  • Kyzas GZ, Bikiaris DN (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs 13:312–337

    PubMed  PubMed Central  Google Scholar 

  • Le Nguyen QT, Okajima M, Mitsumata T, Kan K, Tran HT, Kaneko T (2012) Trivalent metal-mediated gelation of novel supergiant sulfated polysaccharides extracted from Aphanothece stagnina. Colloid Polym Sci 290:163–172

    Google Scholar 

  • Li H, Ru J, Yin W, Liu X, Wang J, Zhang W (2009) Removal of phosphate from polluted water by lanthanum doped vesuvianite. J Hazard Mater 168:326–330

    PubMed  CAS  Google Scholar 

  • Li G, Zhu W, Zhu L, Chai X (2016) Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse. Korean J Chem Eng 33:2215–2221

    CAS  Google Scholar 

  • Li F, Tang J, Geng J, Luo D, Yang D (2019) Polymeric DNA hydrogel: design, synthesis and applications. Prog Polym Sci 98:101163

    CAS  Google Scholar 

  • Liu X, Diao H, Nishi N (2008) Applied chemistry of natural DNA. Chem Soc Rev 37:2745–2757

    PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    PubMed  CAS  Google Scholar 

  • Mehta R, Singhal P, Singh H, Damle D, Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3 Biotech 6(1):81

    PubMed  PubMed Central  Google Scholar 

  • Molobela IP, Cloete TE, Beukes M (2010) Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. Afr J Microbiol Res 4:1515–1524

    CAS  Google Scholar 

  • Okajima MK, Higashi T, Asakawa R, Mitsumata T, Kaneko D, Kaneko T, Ogawa T, Kurata H, Isoda S (2010) Gelation behavior by the lanthanoid adsorption of the cyanobacterial extracellular polysaccharide. Biomacromolecules 11:3172–3177

    PubMed  CAS  Google Scholar 

  • Okajima MK, Nakamura M, Mitsumata T, Kaneko T (2010) Cyanobacterial polysaccharide gels with efficient rare-earth-metal sorption. Biomacromolecules 11:1773–1778

    PubMed  CAS  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    PubMed  CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pechlaner M, Sigel RKO (2012) Characterization of metal ion-nucleic acid interactions in solution. Met Ions Life Sci 10:1–42

    PubMed  CAS  Google Scholar 

  • Pereira AGB, Rodrigues FHA, Paulino AT, Martins AF, Fajardo AR (2021) Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J Clean Prod 284:124703

    CAS  Google Scholar 

  • Rodrigobanos M, Garbayo I, Vilchez C, Bonete MJ, Martinezespinosa RM (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532

    Google Scholar 

  • Schurr JM (2009) Nucleic acid-metal ion interactions. RSC Publishing, London

    Google Scholar 

  • Shalla AH, Yaseen Z, Bhat MA, Rangreez TA, Maswal M (2019) Recent review for removal of metal ions by hydrogels. Sep Sci Technol 54:89–100

    CAS  Google Scholar 

  • Sharma T, Alazhari M, Heath AC, Paine K, Cooper RM (2017) Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. J Appl Microbiol 122:1233–1244

    PubMed  CAS  Google Scholar 

  • Sinha V, Chakma S (2019) Advances in the preparation of hydrogel for wastewater treatment: a concise review. J Environ Chem Eng 7:103295

    CAS  Google Scholar 

  • Szekalska M, Pucilowska A, Szymanska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:1–17

    Google Scholar 

  • Tako M (2015) The principle of polysaccharide gels. Adv Biosci Biotechnol 6:22–36

    Google Scholar 

  • Tian S, Jiang P, Ning P, Su Y (2009) Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chem Eng J 151:141–148

    CAS  Google Scholar 

  • Tokuyama H, Kitamura E, Seida Y (2020) Development of zirconia nanoparticle-loaded hydrogel for arsenic adsorption and sensing. React Funct Polym 146:104427

    CAS  Google Scholar 

  • Tomar V, Kumar D (2013) A critical study on efficiency of different materials for fluoride removal from aqueous media. Chem Cent J 7:51

    PubMed  PubMed Central  Google Scholar 

  • Van Tran V, Park D, Lee Y-C (2018) Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ Sci Pollut Res 25:24569–24599

    Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    PubMed  CAS  Google Scholar 

  • Wang M, Xu L, Peng J, Zhai M, Li J, Wei G (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhu Y, Hu Y, Zeng G, Zhang Y, Zhang C, Feng C (2018) How to construct DNA hydrogels for environmental applications: advanced water treatment and environmental analysis. Small 14:1703305

    Google Scholar 

  • Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B (2019a) Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol 49:318–356

    CAS  Google Scholar 

  • Wang H, Ji X, Ahmed M, Huang F, Sessler JL (2019b) Hydrogels for anion removal from water. J Mater Chem A 7:1394–1403

    CAS  Google Scholar 

  • Wasay SA, Haron MJ, Tokunaga S (1996) Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water Environ Res 68:295–300

    CAS  Google Scholar 

  • Weerasundara L, Gabriele B, Figoli A, Ok Y-S, Bundschuh J (2020) Hydrogels: novel materials for contaminant removal in water—a review. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1776055

    Article  Google Scholar 

  • Xie J, Wang Z, Lu S, Wu D, Zhang Z, Kong H (2014) Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chem Eng J 254:163–170

    CAS  Google Scholar 

  • Yan P, Xia J, Chen Y, Liu Z, Guo J, Shen Y, Zhang C, Wang J (2017) Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. Bioresour Technol 232:354–363

    PubMed  CAS  Google Scholar 

  • Zhang L, Zhou Q, Liu J, Chang N, Wan L, Chen J (2012) Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chem Eng J 185:160–167

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Inner Mongolia, China (2018MS05001) and by National Natural Science Foundation of China (41661093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Dai.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, G., Wang, H., Husile et al. Hydrogel composite of lanthanum and Halorubrum ejinoor sp. cell lysate as an adsorbing material. Biotechnol Lett 43, 1443–1453 (2021). https://doi.org/10.1007/s10529-021-03132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-021-03132-y

Keywords

Navigation