Skip to main content
Log in

Design and characterization of new β-glucuronidase active site variants with altered substrate specificity

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To isolate and characterize the kinetics of variants of E. coli β-glucuronidase (GUS) having altered substrate specificity.

Results

Two small combinatorial libraries of E. coli GUS variants were constructed and screened for improved activities towards the substrate p-nitrophenyl-β-d-galactoside (pNP-gal). Nine of the most active variants were purified and their kinetic parameters were determined. These variants show up to 134-fold improved kcat/KM value towards pNP-gal compared to wild-type GUS, up to 9 × 108-fold shift in specificity from p-nitrophenyl-β-d-glucuronide (pNP-glu) to pNP-gal compared to wild-type, and 103-fold increase in specificity shift compared to a previously evolved GUS variant.

Conclusions

The kinetic data collected for nine new GUS variants is invaluable for training computational protein design models that better predict amino acid substitutions which improve activity of enzyme variants having altered substrate specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen CP, Hsieh YT, Prijovich ZM et al (2012) ECSTASY, an adjus membrane-tethered/soluble protein expression system for the directed evolution of mammalian proteins. Protein Eng Des Sel 25:367–375

    Article  CAS  PubMed  Google Scholar 

  • Cherry JR, Lamsa MH, Schneider P et al (1999) Directed evolution of a fungal peroxidase. Nat Biotechnol 17:379–384

    Article  CAS  PubMed  Google Scholar 

  • Chuang HY, Suen CS, Hwang MJ, Roffler SR (2015) Toward reducing immunogenicity of enzyme replacement therapy: altering the specificity of human β-glucuronidase to compensate for α-iduronidase deficiency. Protein Eng Des Sel 28:519–529

    Article  CAS  PubMed  Google Scholar 

  • Cirino PC, Tang Y, Takahashi K et al (2003) Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnol Bioeng 83:729–734

    Article  CAS  PubMed  Google Scholar 

  • Farinas ET, Schwaneberg U, Glieder A, Arnold FH (2001) Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Adv Synth Catal 343:601–606

    Article  CAS  Google Scholar 

  • Gallagher SR (ed) (1992) Gus protocols: using the GUS gene as a reporter of gene expression. Academic Press, Cambridge

    Google Scholar 

  • Geddie ML, Matsumura I (2004) Rapid evolution of β-glucuronidase specificity by saturation mutagenesis of an active site loop. J Biol Chem 279:26462–26468

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang R et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Grisewood MJ, Gifford NP, Pantazes RJ et al (2013) OptZyme: computational enzyme redesign using transition state analogues. PLoS ONE. doi:10.1371/journal.pone.0075358

    PubMed  PubMed Central  Google Scholar 

  • Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932

    Article  CAS  PubMed  Google Scholar 

  • Hilvert D (2013) Design of protein catalysts. Annu Rev Biochem 82:447–470

    Article  CAS  PubMed  Google Scholar 

  • Kiss G, Çelebi-Ölçüm N, Moretti R et al (2013) Computational enzyme design. Angew Chem Intern Ed 52:5700–5725

    Article  CAS  Google Scholar 

  • Li Y, Cirino PC (2014) Recent advances in engineering proteins for biocatalysis. Biotechnol Bioeng 111:1273–1287

    Article  CAS  PubMed  Google Scholar 

  • Matsumura I, Ellington AD (2001) In vitro evolution of β-glucuronidase into a β-galactosidase proceeds through non-specific intermediates. J Mol Biol 305:331–339

    Article  CAS  PubMed  Google Scholar 

  • Matsumura I, Wallingford JB, Surana NK et al (1999) Directed evolution of the surface chemistry of the reporter enzyme β-glucuronidase. Nat Biotechnol 17:696–701

    Article  CAS  PubMed  Google Scholar 

  • Pantazes RJ, Grisewood MJ, Maranas CD (2011) Recent advances in computational protein design. Curr Opin Struct Biol 21:467–472

    Article  CAS  PubMed  Google Scholar 

  • Ray J, Scarpino V, Laing C, Haskins ME (1999) Biochemical basis of the β-glucuronidase gene defect causing canine mucopolysaccharidosis VII. J Hered 90:119–123

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. ChemBioChem 9:1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Rowe LA, Geddie ML, Alexander OB, Matsumura I (2003) A comparison of directed evolution approaches using the β-glucuronidase model system. J Mol Biol 332:851–860

    Article  CAS  PubMed  Google Scholar 

  • Stramm LE, Wolfe JH, Schuchman EH et al (1990) β-Glucuronidase mediated pathway essential for retinal pigment epithelial degradation of glycosaminoglycans. Disease expression and in vitro disease correction using retroviral mediated cDNA transfer. Exp Eye Res 50:521–532

    Article  CAS  PubMed  Google Scholar 

  • Wallace BD, Wang H, Lane KT et al (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation (CBET Award Number 0967062).

Supporting information

Supplementary Table 1—List of primers used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. Cirino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Z. & Cirino, P.C. Design and characterization of new β-glucuronidase active site variants with altered substrate specificity. Biotechnol Lett 40, 111–118 (2018). https://doi.org/10.1007/s10529-017-2447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2447-6

Keywords

Navigation