Skip to main content
Log in

Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Plant proteinase inhibitor-II (PI-II) proteins are one of the promising defensive proteins that helped the plants to resist against different kinds of unfavorable conditions. Different roles for PI-II have been suggested such as regulation of endogenous proteases, modulation of plant growth and developmental processes and mediating stress responses. The basic knowledge on genetic and molecular diversity of these proteins has provided significant insight into their gene structure and evolutionary relationships in various members of this family. Phylogenetic comparisons of these family genes in different plants suggested that the high rate of retention of gene duplication and inhibitory domain multiplication may have resulted in the expansion and functional diversification of these proteins. Currently, a large number of transgenic plants expressing PI-II genes are being developed for enhancing the defensive capabilities against insects, bacteria and pathogenic fungi. Much emphasis is yet to be given to exploit this ever expanding repertoire of genes for improving abiotic stress resistance in transgenic crops. This review presents an overview about the current knowledge on PI-II family genes, their multifunctional role in plant defense and physiology with their potential applications in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdeen A, Virgós A, Olivella E, Villanueva J, Avilés X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol 57:189–202

    Article  CAS  PubMed  Google Scholar 

  • Abuereish GM (1998) Pepsin inhibitor from roots of Anchusa strigosa. Phytochemistry 48:217–221

    Article  CAS  PubMed  Google Scholar 

  • Antcheva N, Patthy A, Athanasiadis A, Tchorbanov B, Zakhariev S, Pongor S (1996) Primary structure and specificity of a serine proteinase inhibitor from paprika (Capsicum annuum) seeds. Biochim Biophys Acta 1298:95–101

    Article  CAS  PubMed  Google Scholar 

  • Atkinson AH, Heath RL, Simpson RJ, Clarke AE, Anderson MA (1993) Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell 5:203–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balandin T, van der Does C, Albert JMB, Bol JF, Linthorst HJM (1995) Structure and induction pattern of a novel proteinase inhibitor class II gene of tobacco. Plant Mol Biol 27:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Barta E, Pintar A, Pongor S (2002) Repeats with variations: accelerated evolution of the Pin2 family of proteinase inhibitors. Trends Genet 18:600–603

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, Schipper B, Bakker P, Bosch D, Jongsma M (2000) Characterization of potato proteinase inhibitor II reactive site mutants. Eur J Biochem 267:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Benchabane M, Schluter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochimie 92:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Berger A, Schechter I (1970) Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci 257:249–264

    Article  CAS  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee C, Prasad DT, Manjunath NH, Sanyal D, Zarga SM (2012) Exploring plant proteinase inhibitors. Genom Appl Biol 3:8–21. doi:10.3969/gab.2012.03.0002

    Google Scholar 

  • Birk Y (2003) Plant protease inhibitors: significance in nutrition, plant protection, cancer prevention and genetic engineering. Springer, Berlin, p 170

    Google Scholar 

  • Bishop PD, Makus DJ, Pearce G, Ryan CA (1981) Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymatically released from cell walls. Proc Natl Acad Sci USA 78:3536–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant J, Green TR, Gurusaddaiah T, Ryan CA (1976) Proteinase inhibitor II from potatoes: isolation and characterization of its protomer components. Biochemistry 15:3418–3424

    Article  CAS  PubMed  Google Scholar 

  • Brzin J, Kidric M (1995) Proteinases and their inhibitors in plants: role in normal growth and in response to various stress conditions. Biotechnol Genet Eng Rev 13:421–467

    Article  Google Scholar 

  • Cançado GMA, Nogueira FTS, Camargo SR, Drummond RD, Jorge RA, Menossi M (2008) Gene expression profiling in maize roots under aluminum stress. Biol Plant 52:475–485

    Article  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant-pathogen interactions. J Plant Res 124:489–499

    Article  CAS  PubMed  Google Scholar 

  • Charity JA, Hughes P, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (2005) Pest and disease protection conferred by expression of barley ß-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco. Funct Plant Biol 32:35–44

    Article  CAS  Google Scholar 

  • Choi D, Park JA, Seo YS, Chun YJ, Kim WT (2000) Structure and stress-related expression of two cDNAs encoding proteinase inhibitor II of Nicotiana glutinosa L. Biochim Biophys Acta 1492:211–215

    Article  CAS  PubMed  Google Scholar 

  • Christeller JT, Farley PC, Ramsay RJ, Sullivan PA, Laing WA (1998) Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudates. Eur J Biochem 254:160–167

    Article  CAS  PubMed  Google Scholar 

  • Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146(3):952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chye ML, Sin SF, Xu ZF, Yeung EC (2006) Serine proteinase inhibitor proteins: exogenous and endogenous functions. Vitro Cell Dev Biol Plant 42:100–108

    Article  CAS  Google Scholar 

  • Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Plant J 12:49–61

    Article  CAS  PubMed  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA, Ryan CA (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829

    Article  CAS  PubMed  Google Scholar 

  • Delano-Frier JP, Aviles-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillon-Arbelaez PA, Herrera-Estrella L et al (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genom 12:363

    Article  CAS  Google Scholar 

  • Doares SH, Narváez-Vásquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domash VI, Sharpio TP, Zabreiko SA, Sosnovskaya TF (2008) Proteolytic enzymes and trypsin inhibitors of higher plants under stress conditions. Russ J Inorg Chem 34:318–322

    CAS  Google Scholar 

  • Dombrowski JE (2003) Sodium chloride stress activation of wound related genes in tomato plants. Plant Physiol 132:2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunaevskii YE, Gladysheva IP, Pavlukova EB, Beliakova GA, Gladysheva DP, Papisova AI, Larionova NI, Belozersky MA (1997) The anionic protease inhibitor BBWI-I from buckwheat seeds—kinetic properties and possible biological role. Plant Physiol 100:483–488

    Article  Google Scholar 

  • Dunaevsky YE, Pavlukova EB, Beliakova GA, Tsybina TA, Gruban TN, Belozersky MA (1998) Protease inhibitors in buckwheat seeds: comparison of anionic and cationic inhibitors. J Plant Physiol 152:696–702

    Article  CAS  Google Scholar 

  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA (2010) Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci USA 25:1–5

    Google Scholar 

  • Falco MC, Marbach PAS, Pompermayer P, Lopes FCC, Silva-Filho MC (2001) Mechanisms of sugarcane response to herbivory. Genet Mol Biol 24:113–122

    Article  CAS  Google Scholar 

  • Fan S, Wu G (2005) Characteristics of plant proteinase inhibitors and their applications in compating phytophagous insets. Bot Bull Acad Sin 46:273–292

    CAS  Google Scholar 

  • Fan X, Shi X, Zhao J, Zhao R, Fan Y (1999) Insecticidal activity of transgenic tobacco plants expressing both Bt and CpTI genes on cotton bollworm (Helicoverpa armigera). Chin J Biotechnol 15:1

    CAS  PubMed  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of preoteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Kuckenberg M, Kastilan R, Muth J, Gebhardt C (2015) Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors. Mol Genet Genom 290:387–398

    Article  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaddour K, Vicente-Carbajosa J, Lara P, Isabel-Lamoneda I, Díaz I, Carbonero P (2001) A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol Biol 45:599–608

    Article  CAS  PubMed  Google Scholar 

  • Gadea J, Mayda ME, Conejero V, Vera P (1996) Characterization of defense-related genes ectopically expressed in viroid-infected tomato plants. Mol Plant Microb Interact 9(5):409–415

    Article  CAS  Google Scholar 

  • Galleschi L, Friggeri M, Repiccioli R, Come D (1993) Aspartic proteinase inhibitor from wheat: some properties. In: Proceedings of the fourth international workshop on seeds, Angers, France, pp 207–211

  • Gatehouse AMR (1999) In: Clement SL, Quisenberry SS (eds) Global plant genetic resources for insect resistant crops. CRC Press, Boca Raton

  • Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246:10–18

    Article  CAS  PubMed  Google Scholar 

  • Graham JS, Pearce G, Merryweather J, Titani K, Ericsson L, Ryan CA (1985a) Wound-induced proteinase inhibitors from tomato leaves. I. The cDNA-deduced primary structure of pre-inhibitor I and its post-translational processing. J Biol Chem 260(11):6555–6560

    CAS  PubMed  Google Scholar 

  • Graham JS, Pearce G, Merryweather J, Titani K, Ericsson LH, Ryan CA (1985b) Wound-induced proteinase inhibitors from tomato leaves. II. The cDNA-deduced primary structure of pre-inhibitor II. J Biol Chem 260:6561–6564

    CAS  PubMed  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PC (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819(2):176–185

    Article  CAS  PubMed  Google Scholar 

  • Green T, Ryan C (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  CAS  PubMed  Google Scholar 

  • Grosse‐Holz FM, Hoorn RAL (2016) Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants. New Phytol, pp 1–14

  • Gruden K, Strukelj B, Ravnikar M, Poljsak-Prijatelj M (1997) Potato cysteine proteinase inhibitor gene family: molecular cloning, characterisation and immunocytochemical localisation studies. Plant Mol Biol 34:317–323

    Article  CAS  PubMed  Google Scholar 

  • Guerra F, Duplessis S, Kohler A, Martin F, Tapia J, Lebed P, Zamudio F, González E (2009) Gene expression analysis of Populus deltoides roots subjected to copper stress. Environ Exp Bot 67:335–344

    Article  CAS  Google Scholar 

  • Guerra FP, Reyes L, Vergara-Jaque A, Campos-Hernández C, Gutiérrez A, Pérez-Díaz J, Pérez-Díaz R, Blaudez D, Ruíz-Lara S (2015) Populus deltoides Kunitz trypsin inhibitor 3 confers metal tolerance and binds copper, revealing a new defensive role against heavy metal stress. Environ Exp Bot 115:28–37

    Article  CAS  Google Scholar 

  • Habib H, Fazili KM (2007) Plant protease inhibitors: a defense strategy in plants. Biotechnol Mol Biol Rev 2:068–085

    Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  CAS  PubMed  Google Scholar 

  • Hartl M, Giri AP, Kaur H, Baldwin IT (2010) Serine protease inhibitor specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell 22:4158–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Barton PA, Simpson RJ, Reid GE, Lim G, Anderson MA (1995) Characterization of the protease processing sites in a multidomain proteinase inhibitor precursor from Nicotiana alata. Eur J Biochem 230:250–257

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, McDonald G, Christeller JT, Lee M, Bateman K, West J, Van Heeswijck R, Anderson MA (1997) Proteinase inhibitors from Nicotiana alata enhance plant resistance to insect pests. J Insect Physiol 43:833–842

    Article  CAS  PubMed  Google Scholar 

  • Heibges A, Glaczinski H, Ballvora A, Salamini F, Gebhardt C (2003) Structural diversity and organization of three gene families for Kunitz-type enzyme inhibitors from potato tubers (Solanum tuberosum L.). Mol Genet Genom 269:526–534

    Article  CAS  Google Scholar 

  • Herde O, Atzorn R, Fisahn J, Wasternack C, Willmitzer L, Peña-Cortés H (1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis. Plant Physiol 112:853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosa MR, Turrà D, Fogliano V, Monte E, Lorito M (2006) Identification and characterization of potato protease inhibitors able to inhibit pathogenicity and growth of Botrytis cinerea. Physiol Mol Plant Pathol 68:138–148

    Article  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sherman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 300:160–163

    Article  Google Scholar 

  • Holländer-Czytko H, Andersen JK, Ryan CA (1985) Vacuolar localization of wound-induced carboxypeptidase inhibitor in potato leaves. Plant Physiol 78:76–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Horn M, Patankar AG, Zavala JA, Wu J, Doleckova-Maresova L, Vujtechova M, Mares M, Baldwin IT (2005) Differential elicitation of two processing proteases controls the processing pattern of the trypsin proteinase inhibitor precursor in Nicotiana attenuata. Plant Physiol 139:375–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587. doi:10.1093/nar/gkm259

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Xiao B, Xiong L (2007) Characterization of a stress responsive protease inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85

    Article  CAS  PubMed  Google Scholar 

  • Hubbard KE, Siegel RS, Valerio G, Brandt B, Schroeder JI (2012) Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analyses. Ann Bot 109:5–17

    Article  CAS  PubMed  Google Scholar 

  • Jamal F, Pandey PK, Singh D, Khan MY (2013) Serine protease inhibitors in plants: nature’s arsenal crafted for insect predators. Phytochem Rev 12:1–34

    Article  CAS  Google Scholar 

  • Johnson R, Ryan CA (1990) Wound-inducible potato inhibitor II genes: enhancement of expression by sucrose. Plant Mol Biol 14:527–536

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86:9871–9875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi BN, Sainani MN, Bastawade KB, Deshpande VV, Gupta VS, Ranjekar PK (1999) Pearl millet cysteine protease inhibitor. Evidence for the presence of two distinct sites responsible for anti-fungal and anti-feedent activities. Eur J Biochem 265:556–563

    Article  CAS  PubMed  Google Scholar 

  • Joshi RS, Tanpure RS, Singh RK, Gupta VS, Giri AP (2014) Resistance through inhibition: ectopic expression of serine protease inhibitor offers stress tolerance via delayed senescence in yeast cell. Biochem Biophys Res Commun 452:361–368

    Article  CAS  PubMed  Google Scholar 

  • Katoch M, Rani S, Kumar S, Chahota RK (2014) plant protection with the use of protease inhibitors- a scientific review. Life Sci Leafl 53:1–21

    Google Scholar 

  • Keil M, Sanchez-Serrano J, Schell J, Willmitzer L (1986) Primary structure of a proteinase inhibitor II gene from potato (Solanum tuberosum). Nucleic Acid Res 14:5641–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keilova H, Tomasek V (1976) Isolation and some properties of cathepsin D inhibitor from potatoes. Collect Czech Chem Commun 41:489–497

    Article  CAS  Google Scholar 

  • Kernan A, Thornburg RW (1989) Auxin levels regulate the expression of a wound-inducible proteinase inhibitor II chloramphenicol acetyl transferase gene fusion in vitro and in vivo. Plant Physiol 9:73–78

    Article  Google Scholar 

  • Kidrič M, Kos J, Sabotič J (2014) Proteases and their endogenous inhibitors in the plant response to abiotic stress. Bot Serbica 38:139–158

    Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hong Y, An CS, Lee K (2001) Expression characteristics of serine proteinase inhibitor II under variable environmental stresses in hot pepper (Capsicum annuum L.). Plant Sci 161:27–33

    Article  CAS  Google Scholar 

  • Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS (2005) Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochem Biophys Res Commun 330:921–927

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Konarev AV, Griffin J, Konechnaya GY, Shewry PR (2004) The distribution of serine proteinase inhibitors in seeds of the Asteridae. Phytochemistry 65:3003–3020

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Ranganathan S (2008) Tandem duplication, circular permutation, molecular adaptation: how Solanaceae resist pests via inhibitors. BMC Bioinform 9:S22

    Article  CAS  Google Scholar 

  • Kulkarni A, Rao M (2009) Differential elicitation of an aspartic protease inhibitor: regulation of endogenous protease and initial events in germination in seeds of Vigna radiate. Peptides 30:2118–2126

    Article  CAS  PubMed  Google Scholar 

  • Kunitz M (1945) Crystallization of a trypsin inhibitor from soybean. Science 101:668–669

    Article  CAS  PubMed  Google Scholar 

  • Larrieu A, Vernoux T (2016) Q&A: how does jasmonate signaling enable plants to adapt and survive? BMC Biol 14:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5:93–109

    Article  Google Scholar 

  • Lee JS, Brown WE, Graham JS, Pearce G, Fox EA, Dreher TW, Ahern KG, Pearson GD, Ryan CA (1986) Molecular characterization and phylogenetic studies of a wound-inducible proteinase inhibitor I gene in Lycopersicon species. Proc Natl Acad Sci USA 83:7277–7281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XQ, Zhang T, Donnelly D (2011) Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family. PLoS ONE 6:e18615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xia KF, Deng YG, Huang XL, Hu BL, Xu X, Xu ZF (2006) The nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes. Plant Cell Physiol 47:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Lopez F, Vansuyt G, Derancourt J, Fourcroy P, Casse-Delbart F (1994) Identifcation by 2D-page analysis of sodium chloride-stress induced proteins in radish (Raphanus sativus). Cell Mol Biol 40:85–90

    CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorito M, Broadway RM, Hayes CK, Woo SL, Noviello C, Williams DL, Harman GE (1994) Proteinase inhibitors from plants as a novel class of fungicides. Mol Plant Microbe Interact 7:525–527

    Article  CAS  Google Scholar 

  • Luo M, Wang Z, Li H, Xia KF, Cai Y, Xu ZF (2009) Overexpression of a Weed (Solanum americanum) Proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int J Mol Sci 10:1896–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeed A, Makhdoom R, Husnain T, Riazuddin S (2011) Assessment of potato proteinase inhibitor-II gene as an antifungal and insecticidal agent. Acta Agric Scand Sect B 61:92–96

    Google Scholar 

  • Major IT, Constabel CP (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146:888–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malone M, Alarcon JJ (1995) Only xylem-borne factors can account for systemic wound signalling in the tomato plant. Planta 196:740–746

    Article  CAS  Google Scholar 

  • Martinez M, Diaz I (2008) The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol Biol 8:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Diaz I (2005) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot 56:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Massange-Sanchez JA, Palmeros-Suarez PA, Martinez-Gallardo NA, Castrillon-Arbelaez PA, Avilés-Arnaut H, Alatorre-Cobos F, Tiessen A, Délano-Frier JP (2015) The novel and taxonomically restricted Ah24 gene from grain amaranth (Amaranthus hypochondriacus) has a dual role in development and defense. Front Plant Sci 6:602

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller EA, Lee MCS, Atkinson AHO, Anderson MA (2000) Identification of a novel four-domain member of the proteinase inhibitor II family from the stigmas of Nicotiana alata. Plant Mol Biol 42:329–333

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Mahajan N, Tamhane VA, Kulkarni MJ, Baldwin IT, Gupta VS, Giri AP (2012) Stress inducible proteinase inhibitor diversity in Capsicum annuum. BMC Plant Biol 12:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosolov VV, Loginova MD, Fedurkina NV, Benken II (1976) The biological significance of proteinase inhibitors in plants. Plant Sci Lett 7:77–80

    Article  CAS  Google Scholar 

  • Moura DS, Ryan CA (2001) Wound-inducible proteinase inhibitors in pepper. Differential regulation upon wounding, systemin and methyl jasmonate. Plant Physiol 126:289–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir F, Naqvi SMS, Mahmood T (2013) In vitro and in silico characterization of Solanum lycopersicum wound-inducible proteinase inhibitor-II gene. Turk J Biol 37:1–10

    CAS  Google Scholar 

  • Narvaez-Vasquez J, Orozco-Cardenas ML, Ryan CA (2007) Systemic wound signaling in tomato leaves is cooperatively regulated by systemin and hydroxyproline-rich glycopeptide signals. Plant Mol Biol 65:711–718

    Article  CAS  PubMed  Google Scholar 

  • Narváez-Vásquez J, Franceschi VR, Ryan CA (1993) Proteinase-inhibitor synthesis in tomato plants: evidence for extracellular deposition in roots through the secretory pathway. Planta 189:257–266

    Article  Google Scholar 

  • Norton G (1991) Proteinase inhibitors. In: D’Mello JPF, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge, pp 68–106

    Chapter  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  Google Scholar 

  • Odeny DA, Stich B, Gebhardt C (2010) Physical organization of mixed protease inhibitor gene clusters, coordinated expression and association with resistance to late blight at the StKI locus on potato chromosome III. Plant Cell Env 33:2149–2161

    Article  CAS  Google Scholar 

  • Paiva PMG, Pontual EV, Coelho LCBB, Napoleão TH (2013) Protease inhibitors from plants: Biotechnological insights with emphasis on their effects on microbial pathogens. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp k641–k649

    Google Scholar 

  • Pautot V, Holzer FM, Walling LL (1991) Differential expression of tomato proteinase inhibitor I and II genes during bacterial pathogen invasion and wounding. Mol Plant Microb Interact 4:284–292

    Article  CAS  Google Scholar 

  • Pearce G, Sy L, Russell C, Ryan CA, Hass GM (1982) Isolation and characterization from potato tubers of two polypeptide inhibitors of serine proteinases. Arch Biochem Biophys 213:456–462

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Ryan CA, Liljegren D (1988) Proteinase inhibitor-I and inhibitor-II in fruit of wild tomato species—transient components of a mechanism for defense and seed dispersal. Planta 175:527–531

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898

    Article  CAS  PubMed  Google Scholar 

  • Pearce G, Johnson S, Ryan CA (1993a) Purification and characterization from tobacco (Nicotina tabacum) leaves of six small, wound-inducible, proteinase iso inhibitors of the potato inhibitor II family. Plant Physol 102:639–644

    Article  CAS  Google Scholar 

  • Pearce G, Johnson S, Ryan CA (1993b) Purification and characterization from tobacco (Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the potato inhibitor II family. Plant Physiol 102:639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekkarinen AI, Longstaff C, Jones BL (2007) Kinetics of the inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors. J Agric Food Chem 55:2736–2742. doi:10.1021/jf0631777

    Article  CAS  PubMed  Google Scholar 

  • Peña-Cortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    Article  Google Scholar 

  • Peña-Cortés H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernas M, Sanchez-Monge R, Salcedo G (2000) Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 467:206–210

    Article  CAS  PubMed  Google Scholar 

  • Plunkett G, Senear DF, Zuroske G, Ryan CA (1982) Proteinase inhibitors I and II from leaves of wounded tomato plants: purification and properties. Arch Biochem Biophys 213:463–472

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acid Res 34:D320–D325

    Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acid Res 38:D227–D233

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acid Res 40:343–350

    Article  CAS  Google Scholar 

  • Rehman S, Mahmood T (2015) Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant 37:178

    Article  CAS  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson M (1977) The protease inhibitors of plants and micro- organisms. Phytochemistry 16:159–169

    Article  CAS  Google Scholar 

  • Richardson M (1979) The complete amino acid sequence and the trypsin reactive (inhibitory) site of the major proteinase inhibitor from the fruits of aubergine (Solanum melongena L.). FEBS Lett 104:322–326

    Article  CAS  PubMed  Google Scholar 

  • Rickauer M, Fournier J, Esquerre-Tugaye MT (1989) Induction of proteinase inhibitors in tobacco cell suspension culture by elicitors of Phytophthora parasitica var. nicotianae. Plant Physiol 90:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosahl S, Feussner I (2005) Oxylipins. In: Murphy DJ (ed) Plant lipids: biology, utilization, and manipulation. Blackwell Publishing, Oxford, pp 329–354

    Google Scholar 

  • Roszkowska-Jakimiec W, Bankowska A (1998) Cathepsin D inhibitor from Vicia sativa L. Rocz Akad Med Bialymst 43:245–249

    CAS  PubMed  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insect and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Ryan CA (1992) The search for proteinase inhibitor inducing factor, PIIF. Plant Mol Biol 19:123–133

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (2000) The systemin-signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    Article  CAS  PubMed  Google Scholar 

  • Santamaria ME, Diaz-Mendoza M, Diaz I, Martinez M (2014) Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics. BMC Genom 15:812–826

    Article  CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H, Tabata S (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8:153–161

    Article  CAS  PubMed  Google Scholar 

  • Scalschi L, Sanmartin M, Camanes G, Troncho P, Sanchez-Serrano JJ, Garcia-Agustin P, Vicedo B (2015) Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during the activation of defense responses against Botrytis cinerea. Plant J 81:304–315

    Article  CAS  PubMed  Google Scholar 

  • Schirra HJ, Craik DJ (2005) Structure and folding of potato type II proteinase inhibitors: circular permutation and intramolecular domain swapping. Protein Pept Lett 12(5):421–431

    Article  CAS  PubMed  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR (2003) Tuber storage proteins. Ann Bot 91:755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Sin SF, Chye ML (2004) Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta 219:1010–1022

    Article  CAS  PubMed  Google Scholar 

  • Sin SF, Yeung EC, Chye ML (2006) Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. Plant J 45(1):58–70

    Article  CAS  PubMed  Google Scholar 

  • Snowden KC, Richards KD, Gardner RC (1995) Aluminum-induced genes (induction by toxic metals, low calcium, and wounding and pattern of expression in root tips). Plant Physiol 107:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares-Costa A, Beltramini L, Thieman O, Henrique- Silva F (2002) A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun 296:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan T, Kumar KR, Kirti PB (2009) Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant Cell Physiol 50(3):541–553

    Article  CAS  PubMed  Google Scholar 

  • Stiekema WJ, Heidekamp F, Dirkse WG, van Beckum J, de Haan P, ten Bosch C, Louwerse JD (1988) Molecular cloning and analysis of four potato tuber mRNAs. Plant Mol Biol 11:255–269

    Article  CAS  PubMed  Google Scholar 

  • Sun JQ, Jiang HL, Li CY (2011) Systemin/Jasmonate-mediated systemic defense signaling in tomato. Mol Plant 4:607–615

    Article  CAS  PubMed  Google Scholar 

  • Tamhane VA, Giri AP, Sainani MN, Gupta VS (2007) Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Gene 403:29–38

    Article  CAS  PubMed  Google Scholar 

  • Tamhane VA, Giri AP, Kumar P, Gupta VS (2009) Spatial and temporal expression patterns of diverse Pin-II proteinase inhibitor genes in Capsicum annuum Linn. Gene 442:88–98

    Article  CAS  PubMed  Google Scholar 

  • Tamhane VA, Mishra M, Mahajan NS, Gupta VS, Giri AP (2012) Plant PinII family proteinase inhibitor: structural and functional diversity. Funct Plant Sci Biotechnol 6:42–58

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valueva TA, Revina TA, Kladnitskaya GV, Mosolov VV (1998) Kuntz-type proteinase inhibitors from intact and Phytophthora infected potato tubers. FEBS Lett 426:131–134

    Article  CAS  PubMed  Google Scholar 

  • Valueva TA, Revina TA, Gvozdeva EL, Gerasimova NG, Ozeretskovskaya OL (2003) Role of proteinase inhibitors in potato protection. Russ J Bioorg Chem 29:454–458

    Article  CAS  Google Scholar 

  • Vanjildorj E, Song SY, Yang ZH, Choi JE, Noh YS, Park S, Lim WJ, Cho KM, Yun HD, Lim YP (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trend Plant Sci 2:302–307

    Article  Google Scholar 

  • Werner R, Guitton MC, Muhlbach HP (1993) Nucleotide sequence of a cathepsin D inhibitor protein from tomato. Plant Physiol 103:1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Wingate VPM, Franceschi VR, Ryan CA (1991) Tissue and cellular localization of proteinase inhibitors I and II in the fruit of the wild tomato, Lycopersicon peruvianum (L.) Mill. Plant Physiol 97:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Ouyang XZ, Xia KF, Huang YF, Pan WB, Cai YP, Xu X, Li B, Xu ZF (2007) Chloroplast-like organelles were found in enucleate sieve elements of transgenic plants overexpressing a proteinase inhibitor. Biosci Biotech Biochem 71:2759–2765

    Article  CAS  Google Scholar 

  • Xu ZF, Qi WQ, Ouyang XZ, Yeung E, Chye ML (2001) A proteinase inhibitor II of Solanum americanum is expressed in phloem. Plant Mol Biol 47:727–738

    Article  CAS  PubMed  Google Scholar 

  • Ye XY, Ng TB, Rao PF (2001) A Bowman–Birk-type trypsinchymotrypsin inhibitor from broad beans. Biochem Biophys Res Commun 289:91–96

    Article  CAS  PubMed  Google Scholar 

  • Young RJ, Scheuring CF, Harris-Haller L, Taylor BH (1994) An auxin-inducible proteinase inhibitor gene from tomato. Plant Physiol 104:811–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Protein Struct Funct Bioinform 64:643–651

    Article  CAS  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Xie XZ, Xu YZ, Wu NH (2004) Isolation and functional assessment of a tomato proteinase inhibitor II gene. Plant Physiol Biochem 42:437–444

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu F, Yao L, Luo C, Yin Y, Wang G, Huang Y (2012) Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Breed Sci 62:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YC, Abel CA, Chen MS (2007) Interaction of Cry1Ac toxin (Bacillus thuringiensis) and proteinase inhibitors on the growth, development and midgut proteinase activities of the bollworm, Helicoverpa zea. Pestic Biochem Physiol 87:39–46

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Higher Education Commission, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Mahmood.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Aziz, E., Akhtar, W. et al. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family. Biotechnol Lett 39, 647–666 (2017). https://doi.org/10.1007/s10529-017-2298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2298-1

Keywords

Navigation