Skip to main content
Log in

PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12.

Results

Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P < 0.05). Furthermore, PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed.

Conclusion

PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adimoolam S, Sirisawad M, Chen J et al (2007) HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA 104:19482–19487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti R, Conte M, Altucci L (2015) Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal 23:99–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buggy JJ, Cao ZA, Bass KE et al (2006) CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol Cancer Ther 5:1309–1317

    Article  CAS  Google Scholar 

  • Bui HT, Wakayama S, Kishigami S et al (2010) Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol Reprod 83:454–463

    Article  CAS  Google Scholar 

  • Campbell KH, Fisher P, Chen WC et al (2007) Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68(Suppl 1):S214–S231

    Article  CAS  Google Scholar 

  • Cibelli J (2007) Developmental biology. A decade of cloning mystique. Science 316:990–992

    Article  CAS  Google Scholar 

  • Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    CAS  Google Scholar 

  • Hardy K (1997) Cell death in the mammalian blastocyst. Mol Hum Reprod 3:919–925

    Article  CAS  Google Scholar 

  • Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–1067

    Article  CAS  Google Scholar 

  • Jin JX, Li S, Gao QS et al (2013) Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer. Theriogenology 80:630–635

    Article  CAS  Google Scholar 

  • Jin JX, Li S, Hong Y et al (2014) CUDC-101, a histone deacetylase inhibitor, improves the in vitro and in vivo developmental competence of somatic cell nuclear transfer pig embryos. Theriogenology 81:572–578

    Article  CAS  Google Scholar 

  • Jin JX, Kang JD, Li S et al (2015) PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos. Biochem Biophys Res Commun 456:156–161

    Article  CAS  Google Scholar 

  • Kang JD, Li S, Lu Y et al (2013) Valproic acid improved in vitro development of pig cloning embryos but did not improve survival of cloned pigs to adulthood. Theriogenology 79(306–311):e301

    Google Scholar 

  • Kishigami S, Mizutani E, Ohta H et al (2006) Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340:183–189

    Article  CAS  Google Scholar 

  • Lai L, Kang JX, Li R et al (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  CAS  PubMed Central  Google Scholar 

  • Lee DY, Hayes JJ, Pruss D et al (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Article  CAS  Google Scholar 

  • Liang S, Zhao MH, Choi JW et al (2015) Scriptaid treatment decreases dna methyltransferase 1 expression by induction of MicroRNA-152 expression in porcine somatic cell nuclear transfer embryos. PLoS One 10:e0134567

    Article  PubMed Central  Google Scholar 

  • Liu L, Liu Y, Gao F et al (2012) Embryonic development and gene expression of porcine SCNT embryos treated with sodium butyrate. J Exp Zool B 318:224–234

    Article  CAS  Google Scholar 

  • Luo B, Ju S, Muneri CW et al (2015) Effects of histone acetylation status on the early development of in vitro porcine transgenic cloned embryos. Cell Reprogr 17:41–48

    Article  CAS  Google Scholar 

  • Mao J, Zhao MT, Whitworth KM et al (2015) Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming. Cell Reprogr 17:28–40

    Article  CAS  Google Scholar 

  • Polejaeva IA, Chen SH, Vaught TD et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407(2000):86–90

    Article  CAS  Google Scholar 

  • Pratt SL, Sherrer ES, Reeves DE et al (2006) Factors influencing the commercialization of cloning in the pork industry. Soc Reprod Fertil Suppl 62:303–315

    CAS  Google Scholar 

  • Qian L, Tang M, Yang J et al (2015) Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435

    Article  CAS  PubMed Central  Google Scholar 

  • Rideout WM 3rd, Eggan K, Jaenisch R (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293:1093–1098

    Article  CAS  Google Scholar 

  • Rybouchkin A, Kato Y, Tsunoda Y (2006) Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol Reprod 74:1083–1089

    Article  CAS  Google Scholar 

  • Salvador MA, Wicinski J, Cabaud O et al (2013) The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res 19:6520–6531

    Article  CAS  Google Scholar 

  • Song Y, Hai T, Wang Y et al (2014) Epigenetic reprogramming, gene expression and in vitro development of porcine SCNT embryos are significantly improved by a histone deacetylase inhibitor-m-carboxycinnamic acid bishydroxamide (CBHA). Protein Cell 5:382–393

    Article  CAS  PubMed Central  Google Scholar 

  • Su J, Wang Y, Li Y et al (2011) Oxamflatin significantly improves nuclear reprogramming, blastocyst quality, and in vitro development of bovine SCNT embryos. PLoS One 6:e23805

    Article  CAS  PubMed Central  Google Scholar 

  • Turner BM (1998) Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell Mol Life Sci 54:21–31

    Article  CAS  Google Scholar 

  • Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  CAS  Google Scholar 

  • Wang F, Kou Z, Zhang Y et al (2007) Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol Reprod 77:1007–1016

    Article  CAS  Google Scholar 

  • Wang Y, Su J, Wang L et al (2011) The effects of 5-aza-2′-deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cell Reprogr 13:297–306

    Article  CAS  Google Scholar 

  • Whitworth KM, Zhao J, Spate LD et al (2011) Scriptaid corrects gene expression of a few aberrantly reprogrammed transcripts in nuclear transfer pig blastocyst stage embryos. Cell Reprogr 13:191–204

    Article  CAS  Google Scholar 

  • Whitworth KM, Zhao J, Lee K et al (2015) Transcriptome analysis of pig in vivo, in vitro-fertilized, and nuclear transfer blastocyst-stage embryos treated with histone deacetylase inhibitors postfusion and activation reveals changes in the lysosomal pathway. Cell Reprogr 17:243–258

    Article  CAS  Google Scholar 

  • Yang X, Smith SL, Tian XC et al (2007) Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet 39:295–302

    Article  CAS  Google Scholar 

  • Yang C, Choy E, Hornicek FJ et al (2011) Histone deacetylase inhibitor PCI-24781 enhances chemotherapy-induced apoptosis in multidrug-resistant sarcoma cell lines. Anticancer Res 31:1115–1123

    CAS  PubMed Central  Google Scholar 

  • Yin XJ, Tani T, Yonemura I et al (2002) Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod 67:442–446

    Article  CAS  Google Scholar 

  • Yoshioka K, Suzuki C, Tanaka A et al (2002) Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66:112–119

    Article  CAS  Google Scholar 

  • Yu Y, Ding C, Wang E et al (2007) Piezo-assisted nuclear transfer affects cloning efficiency and may cause apoptosis. Reproduction 133:947–954

    Article  CAS  Google Scholar 

  • Zhan Q, Tsai S, Lu Y et al (2013) RuvBL2 is involved in histone deacetylase inhibitor PCI-24781-induced cell death in SK-N-DZ neuroblastoma cells. PLoS One 8:e71663

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Development Program for Basic Research of China (Grant No. 20150622005JC) and the institute for Basic Science (Grant No. IBS-R021-D1-2015-a02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi-Jun Yin or Jin-Dan Kang.

Additional information

Long Jin and Hai-Ying Zhu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zhu, HY., Guo, Q. et al. PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos. Biotechnol Lett 38, 1433–1441 (2016). https://doi.org/10.1007/s10529-016-2141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2141-0

Keywords

Navigation