Skip to main content
Log in

Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner–Doudoroff pathway in Escherichia coli

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To construct an Escherichia coli strain capable of producing riboflavin with high titer and yield.

Results

A low copy number plasmid pLS01 containing a riboflavin operon under the control of a constitutive promoter was constructed and introduced into Escherichia coli MG1655. Subsequently, the pfkA, edd and ead genes were disrupted, and the resulting strain LS02T produced 667 mg riboflavin/l in MSY medium supplied with 10 g glucose/l in flask cultivation. In a fed-batch process, riboflavin production of the strain reached 10.4 g/l with a yield of 56.8 mg riboflavin/g glucose.

Conclusion

To our knowledge, this is the first report of engineered E. coli strains that can produce more than 10 g riboflavin/l in fed-batch cultivation, indicating that E. coli has potential for riboflavin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Buey RM, Ledesma-Amaro R, Balsera M, de Pereda JM, Revuelta JL (2015) Increased riboflavin production by manipulation of inosine 5′-monophosphate dehydrogenase in Ashbya gossypii. Appl Microbiol Biotechnol 99:9577–9589

    Article  CAS  PubMed  Google Scholar 

  • Dmytruk K, Lyzak O, Yatsyshyn V, Kluz M, Sibirny V, Puchalski C, Sibirny A (2014) Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J Biotechnol 172:11–17

    Article  CAS  PubMed  Google Scholar 

  • Duan YX, Chen T, Chen X, Zhao XM (2010) Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 85:1907–1914

    Article  CAS  PubMed  Google Scholar 

  • Kotlarz D, Garreau H, Buc H (1975) Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim Biophys Acta 381:257–268

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman TE, Cox EC (2010) Site-specific chromosomal integration of large synthetic constructs. Nucleic Acid Res 38:e92. doi:10.1093/nar/gkp1193

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Xu Z, Li Y, Wang Z, Chen T, Zhao X (2014) Metabolic engineering of Escherichia coli for the production of riboflavin. Microb Cell Factor 13:104. doi:10.1186/s12934-014-0104-5

    Google Scholar 

  • Mack M, van Loon AP, Hohmann H-P (1998) Regulation of riboflavin biosynthesis in Bacillus subtilis affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded byribC. J Bacteriol 180:950–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marx H, Mattanovich D, Sauer M (2008) Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb Cell Factor 7:23. doi:10.1186/1475-2859-7-23

    Article  Google Scholar 

  • Qiu YZ, Han J, Guo JJ, Chen GQ (2005) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida. Biotechnol Lett 27:1381–1386

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Shen Z, Chen X, Chen T, Zhao X (2009) Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochem Eng J 46:28–33

    Article  CAS  Google Scholar 

  • Sohoni SV, Nelapati D, Sathe S, Javadekar-Subhedar V, Gaikaiwari RP, Wangikar PP (2015) Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli. Bioresour Technol 188:202–208

    Article  CAS  PubMed  Google Scholar 

  • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Chen T, Ma X, Shen Z, Zhao X (2011) Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol 102:3934–3940

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Bai L, Wang Z, Shi T, Chen T, Zhao X (2014) Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biotechnol 30:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Lin Z, Wang Z, Chen T (2015) Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chin J Chem Eng 23:1834–1839

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Thomas E. Kuhlman and Dr. Zhenquan Lin for kindly providing some of the plasmids used in this study. This work was supported by the National 973 Project (2012CB725203), and National High-tech R&D Program of China (2012AA022103, 2012AA02A702).

Supporting information

Supplementary Table 1—Primers used in this study.

Supplementary Figure 1—pLS01 map.

Supplementary Figure 2—Time profiles of cell growth, glucose consumption and riboflavin production of LS02T cultivated in LBG, M9 and MS media.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Kang, P., Cui, Z. et al. Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner–Doudoroff pathway in Escherichia coli . Biotechnol Lett 38, 1307–1314 (2016). https://doi.org/10.1007/s10529-016-2104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2104-5

Keywords

Navigation