Skip to main content
Log in

Split-inteins and their bioapplications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Split-inteins are a subset of inteins that are expressed in two separate halves and catalyze splicing in trans upon association of the two domains. They occur naturally and have also been artificially generated by splitting of contiguous ones. With their unique properties, split-inteins offer improved controllability, flexibility and capability to existing tools based on contiguous inteins. In addition, split-inteins have proven useful in several new applications. This review gives a general introduction to split-inteins with a focus on their role in expanding the applications of intein-based technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appleby JH, Zhou K, Volkmann G, Liu XQ (2009) Novel split intein for trans-splicing synthetic peptide onto C terminus of protein. J Biol Chem 284:6194–6199

    Article  CAS  PubMed  Google Scholar 

  • Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286:34440–34447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aranko AS, Züger S, Buchinger E, Iwaï H (2009) In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PLoS One 4:e5185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aranko AS, Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H (2014) Structure-based engineering and comparison of novel split inteins for protein ligation. Mol BioSyst 10:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Bachmann AL, Matern JC, Schütz V, Mootz HD (2015) Chemical-tag labeling of proteins using fully recombinant split inteins. Methods Mol Biol 1266:145–159

    Article  PubMed  Google Scholar 

  • Berrade L, Kwon Y, Camarero JA (2010) Photomodulation of protein trans-splicing through backbone photocaging of the DnaE split intein. ChemBioChem 11:1368–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Binschik J, Zettler J, Mootz HD (2011) Photocontrol of protein activity mediated by the cleavage reaction of a split intein. Angew Chem Int Ed Engl 50:3249–3252

    Article  CAS  PubMed  Google Scholar 

  • Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134:6344–6353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Busche AE, Aranko AS, Talebzadeh-Farooji M, Bernhard F, Dötsch V, Iwaï H (2009) Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew Chem Int Ed Engl 48:6128–6131

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Vallejos P, Pallissé R, Mootz HD, Schmidt SR (2012) Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem 287:28686–28696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caspi J, Amitai G, Belenkiy O, Pietrokovski S (2003) Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol 50:1569–1577

    Article  CAS  PubMed  Google Scholar 

  • Charalambous A, Andreou M, Skourides PA (2009) Intein-mediated site-specific conjugation of quantum dots to proteins in vivo. J Nanobiotechnol 7:9

    Article  CAS  Google Scholar 

  • Charalambous A, Antoniades I, Christodoulou N, Skourides PA (2011) Split-inteins for simultaneous, site-specific conjugation of quantum dots to multiple protein targets in vivo. J Nanobiotechnol 9:37

    Article  CAS  Google Scholar 

  • Chen L, Pradhan S, Evans TC Jr (2001) Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Gene 263:39–48

    Article  CAS  PubMed  Google Scholar 

  • Cheriyan M, Pedamallu CS, Tori K, Perler F (2013) Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J Biol Chem 288:6202–6211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin HG, Kim GD, Marin I, Mersha F, Evans TC Jr, Chen L, Xu MQ, Pradhan S (2003) Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci USA 100:4510–4515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong S, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272:15587–15590

    Article  CAS  PubMed  Google Scholar 

  • Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu MQ (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem 271:22159–22168

    Article  CAS  PubMed  Google Scholar 

  • Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu MQ (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281

    Article  CAS  PubMed  Google Scholar 

  • Chong S, Montello GE, Zhang A, Cantor EJ, Liao W, Xu MQ, Benner J (1998) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res 26:5109–5115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu NK, Olschewski D, Seidel R, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2010) Protein immobilization on liposomes and lipid-coated nanoparticles by protein trans-splicing. J Pept Sci 16:582–588

    Article  CAS  PubMed  Google Scholar 

  • Dassa B, Amitai G, Caspi J, Schueler-Furman O, Pietrokovski S (2007) Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry 46:322–330

    Article  CAS  PubMed  Google Scholar 

  • Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S (2009) Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res 37:2560–2573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire V, Wood DW, Wu W, Dansereau JT, Dalgaard JZ, Belfort M (1997) Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci USA 94:11466–11471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhar T, Mootz HD (2011) Modification of transmembrane and GPI-anchored proteins on living cells by efficient protein trans-splicing using the Npu DnaE intein. Chem Commun (Camb) 47:3063–3065

    Article  CAS  Google Scholar 

  • Dhar T, Kurpiers T, Mootz HD (2011) Extending the scope of site-specific cysteine bioconjugation by appending a prelabeled cysteine tag to proteins using protein trans-splicing. Methods Mol Biol 751:131–142

    Article  CAS  PubMed  Google Scholar 

  • Evans TC Jr, Benner J, Xu MQ (1999) The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem 274:18359–18363

    Article  CAS  PubMed  Google Scholar 

  • Evans TC Jr, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Yang DS, Trabbic-Carlson K, Kim B, Chilkoti A, Filipe CD (2005) Self-cleavable stimulus responsive tags for protein purification without chromatography. J Am Chem Soc 127:11228–11229

    Article  CAS  PubMed  Google Scholar 

  • Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287

    Article  CAS  PubMed  Google Scholar 

  • Gray DC, Mahrus S, Wells JA (2010) Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142:637–646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan D, Ramirez M, Chen Z (2013) Split intein mediated ultra-rapid purification of tagless protein (SIRP). Biotechnol Bioeng 110:2471–2481

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Plückthun A (1999) Circular β-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett 459:166–172

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Lingel A, Pluckthun A (2001) Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J Biol Chem 276:16548–16554

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Züger S, Jin J, Tam PH (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Khalid AM, Malik KA (2005) Intein-mediated protein trans-splicing and transgene containment in plastids. Trends Biotechnol 23:217–220

    Article  CAS  PubMed  Google Scholar 

  • Kim SB, Ozawa T, Watanabe S, Umezawa Y (2005) High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc Natl Acad Sci USA 101:11542–11547

    Article  Google Scholar 

  • Kurpiers T, Mootz HD (2008) Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. ChemBioChem 9:2317–2325

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y, Coleman MA, Camarero JA (2006) Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl 45:1726–1729

    Article  CAS  PubMed  Google Scholar 

  • Lee YT, Su TH, Lo WC, Lyu PC, Sue SC (2012) Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein. PLoS One 7:e43820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y (2011) Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett 33:869–881

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun W, Wang B, Xiao X, Liu XQ (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19:958–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lienert F, Torella JP, Chen JH, Norsworthy M, Richardson RR, Silver PA (2013) Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res 41:9967–9975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ (2013) Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS One 8:e59516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu XQ, Yang J (2003) Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem 278:26315–26318

    Article  CAS  PubMed  Google Scholar 

  • Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci USA 106:10999–11004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohmueller JJ, Armel TZ, Silver PA (2012) A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Res 40:5180–5187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu W, Sun Z, Tang Y, Chen J, Tang F, Zhang J, Liu JN (2011) Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage. J Chromatogr A 1218:2553–2560

    Article  CAS  PubMed  Google Scholar 

  • Ludwig C, Pfeiff M, Linne U, Mootz HD (2006) Ligation of a synthetic peptide to the N terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl 45:5218–5221

    Article  CAS  PubMed  Google Scholar 

  • Matern JC, Bachmann AL, Thiel IV, Volkmann G, Wasmuth A, Binschik J, Mootz HD (2015) Ligation of synthetic peptides to proteins using semisynthetic protein trans-splicing. Methods Mol Biol 1266:129–143

    Article  PubMed  Google Scholar 

  • Mills KV, Lew BM, Jiang S, Paulus H (1998) Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA 95:3543–3548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minato Y, Ueda T, Machiyama A, Shimada I, Iwaï H (2012) Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. J Biomol NMR 53:191–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mootz HD, Muir TW (2002) Protein splicing triggered by a small molecule. J Am Chem Soc 124:9044–9045

    Article  CAS  PubMed  Google Scholar 

  • Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muona M, Aranko AS, Iwai H (2008) Segmental isotopic labelling of a multidomain protein by protein ligation by protein trans-splicing. ChemBioChem 9:2958–2961

    Article  CAS  PubMed  Google Scholar 

  • Muona M, Aranko AS, Raulinaitis V, Iwaï H (2010) Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat Protoc 5:574–587

    Article  CAS  PubMed  Google Scholar 

  • Oeemig JS, Aranko AS, Djupsjöbacka J, Heinämäki K, Iwaï H (2009) Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett 583:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard M, Becker CF (2007) Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into cellular membranes. Chem Biol 14:994–1006

    Article  CAS  PubMed  Google Scholar 

  • Otomo T, Teruya K, Uegaki K, Yamazaki T, Kyogoku Y (1999a) Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR 14:105–114

    Article  CAS  PubMed  Google Scholar 

  • Otomo T, Ito N, Kyogoku Y, Yamazaki T (1999b) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38:16040–16044

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Umezawa Y (2007) A genetic method to identify mitochondrial proteins in living mammalian cells. Methods Mol Biol 390:119–130

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Nogami S, Sato M, Ohya Y, Umezawa Y (2000) A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem 72:5151–5157

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Kaihara A, Sato M, Tachihara K, Umezawa Y (2001) Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem 73:2516–2521

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Sako Y, Sato M, Kitamura T, Umezawa Y (2003) A genetic approach to identifying mitochondrial proteins. Nat Biotechnol 21:287–293

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Nishitani K, Sako Y, Umezawa Y (2005) A high-throughput screening of genes that encode proteins transported into the endoplasmic reticulum in mammalian cells. Nucleic Acids Res 33:e34

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496

    Article  CAS  PubMed  Google Scholar 

  • Perler FB (2000) InBase, the intein database. Nucleic Acids Res 28:344–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perler FB, Davis EO, Dean GE, Gimble FS, Jack WE, Neff N, Noren CJ, Thorner J, Belfort M (1994) Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramirez M, Valdes N, Guan D, Chen Z (2013) Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng Des Sel 26:215–223

    Article  CAS  PubMed  Google Scholar 

  • Schaerli Y, Gili M, Isalan M (2014) A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res 42:12322–12328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarzer D, Ludwig C, Thiel IV, Mootz HD (2012) Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site. Biochemistry 51:233–242

    Article  CAS  PubMed  Google Scholar 

  • Scott CP, Abel-Santos E, Wall M, Wahnon DC, Benkovic SJ (1999) Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci USA 96:13638–13643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selgrade DF, Lohmueller JJ, Lienert F, Silver PA (2013) Protein scaffold-activated protein trans-splicing in mammalian cells. J Am Chem Soc 135:7713–7719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shah NH, Dann GP, Vila-Perelló M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134:11338–11341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi J, Muir TW (2005) Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc 127:6198–6206

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Meng Q, Wood DW (2012) A dual ELP-tagged split intein system for non-chromatographic recombinant protein purification. Appl Microbiol Biotechnol 97:829–835

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Tarimala A, Meng Q, Wood DW (2014) A general purification platform for toxic proteins based on intein trans-splicing. Appl Microbiol Biotechnol 98:9425–9435

    Article  CAS  PubMed  Google Scholar 

  • Shingledecker K, Jiang SQ, Paulus H (1998) Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207:187–195

    Article  CAS  PubMed  Google Scholar 

  • Song H, Meng Q, Liu XQ (2012) Protein trans-splicing of an atypical split intein showing structural flexibility and cross-reactivity. PLoS One 7:e45355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanyam P, Chang DD, Fang K, Xie W, Marks AR, Colecraft HM (2013) Manipulating L-type calcium channels in cardiomyocytes using split-intein protein transsplicing. Proc Natl Acad Sci USA 110:15461–15466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun L, Ghosh I, Paulus H, Xu MQ (2001) Protein trans-splicing to produce herbicide-resistant acetolactate synthase. Appl Environ Microbiol 67:1025–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun W, Yang J, Liu XQ (2004) Synthetic two-piece and three-piece split inteins for protein trans-splicing. J Biol Chem 279:35281–35286

    Article  CAS  PubMed  Google Scholar 

  • Sydor JR, Mariano M, Sideris S, Nock S (2002) Establishment of intein-mediated protein ligation under denaturing conditions: C-terminal labeling of a single-chain antibody for biochip screening. Bioconjug Chem 13:707–712

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli A, Benkovic SJ (2007) Split-intein mediated circular ligation used in the synthesis of cyclic peptide libraries in E. coli. Nat Protoc 2:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Thiel IV, Volkmann G, Pietrokovski S, Mootz HD (2014) An atypical naturally split intein engineered for highly efficient protein labeling. Angew Chem Int Ed Engl 53:1306–1310

    Article  CAS  PubMed  Google Scholar 

  • Tolbert TJ, Wong CH (2002) New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew Chem Int Ed Engl 41:2171–2174

    Article  CAS  PubMed  Google Scholar 

  • Tyszkiewicz AB, Muir TW (2008) Activation of protein splicing with light in yeast. Nat Methods 5:303–305

    CAS  PubMed  Google Scholar 

  • Vila-Perelló M, Muir TW (2010) Biological applications of protein splicing. Cell 143:191–200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vila-Perelló M, Hori Y, Ribó M, Muir TW (2008) Activation of protein splicing by protease- or light-triggered O to N acyl migration. Angew Chem Int Ed Engl 47:7764–7767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Volkmann G, Liu XQ (2009) Protein C-terminal labeling and biotinylation using synthetic peptide and split-intein. PLoS One 4:e8381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Volkmann G, Mootz HD (2013) Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 70:1185–1206

    Article  CAS  PubMed  Google Scholar 

  • Volkmann G, Sun W, Liu XQ (2009) Controllable protein cleavages through intein fragment complementation. Protein Sci 18:2393–2402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volkmann G, Volkmann V, Liu XQ (2012) Site-specific protein cleavage in vivo by an intein-derived protease. FEBS Lett 586:79–84

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Chen T, Sakurai K, Han BX, He Z, Feng G, Wang F (2012) Intersectional Cre driver lines generated using split-intein mediated split-Cre reconstitution. Sci Rep 2:497

    PubMed Central  PubMed  Google Scholar 

  • Wang XJ, Jin X, Dun BQ, Kong N, Jia SR, Tang QL, Wang ZX (2014) Gene-splitting technology: a novel approach for the containment of transgene flow in Nicotiana tabacum. PLoS One 9:e99651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wasmuth A, Ludwig C, Mootz HD (2013) Structure-activity studies on the upstream splice junction of a semisynthetic intein. Bioorg Med Chem 21:3495–3503

    Article  CAS  PubMed  Google Scholar 

  • Wei XY, Sakr S, Li JH, Wang L, Chen WL, Zhang CC (2006) Expression of split dnaE genes and trans-splicing of DnaE intein in the developmental cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 157:227–234

    Article  CAS  PubMed  Google Scholar 

  • Wong SS, Kotera I, Mills E, Suzuki H, Truong K (2012) Split-intein mediated re-assembly of genetically encoded Ca2+ indicators. Cell Calcium 51:57–64

    Article  CAS  PubMed  Google Scholar 

  • Wong S, Mills E, Truong K (2013) Simultaneous assembly of two target proteins using split inteins for live cell imaging. Protein Eng Des Sel 26:207–213

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Xu MQ, Liu XQ (1998a) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta 1387:422–432

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Hu Z, Liu XQ (1998b) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu W, Wood DW, Belfort G, Derbyshire V, Belfort M (2002) Intein-mediated purification of cytotoxic endonuclease I-TevI by insertional inactivation and pH-controllable splicing. Nucleic Acids Res 30:4864–4871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu MQ, Perler FB (1996) The mechanism of protein splicing and its modulation by mutation. EMBO J 15:5146–5153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci USA 96:388–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue J, Burz DS, Shekhtman A (2012) Segmental labeling to study multidomain proteins. Adv Exp Med Biol 992:17–33

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Otomo T, Oda N, Kyogoku Y, Uegaki K, Ito N, Ishino Y, Nakamura H (1998) Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc 120:5591–5592

    Article  CAS  Google Scholar 

  • Yang JY, Yang WY (2009) Site-specific two-color protein labeling for FRET studies using split inteins. J Am Chem Soc 131:11644–11645

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Fox GC Jr, Henry-Smith TV (2003) Intein-mediated assembly of a functional β-glucuronidase in transgenic plants. Proc Natl Acad Sci USA 100:3513–3518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zettler J, Schütz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914

    Article  CAS  PubMed  Google Scholar 

  • Zettler J, Eppmann S, Busche A, Dikovskaya D, Dötsch V, Mootz HD, Sonntag T (2013) SPLICEFINDER—a fast and easy screening method for active protein trans-splicing positions. PLoS One 8:e72925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Züger S, Iwai H (2005) Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23:736–740

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Split-inteins and their bioapplications. Biotechnol Lett 37, 2121–2137 (2015). https://doi.org/10.1007/s10529-015-1905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1905-2

Keywords

Navigation