Skip to main content

Advertisement

Log in

Principles and application of antibody libraries for infectious diseases

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andris-Widhopf J, Steinberger P, Fuller R, Rader C, Barbas 3rd CF (2000) Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. In: Barbas 3rd CF, Burton DR, Scott JK, Silveman GJ (eds) Phage display: a laboratoy manual. Cold Spring Harbor Laboratory, New York, pp 9.1–9.113

  • Ayat H, Burrone OR, Sadghizadeh M, Jahanzad E, Rastgou N, Moghadasi S, Arbabi M (2013) Isolation of scFv antibody fragments against HER2 and CEA tumor antigens from combinatorial antibody libraries derived from cancer patients. Biologicals 41:345–354

    Article  PubMed  CAS  Google Scholar 

  • Balu S, Reljic R, Lewis MJ, Pleass RJ, McIntosh R, van Kooten C, van Egmond M, Challacombe S, Woof JM, Ivanyi J (2011) A novel human IgA monoclonal antibody protects against tuberculosis. J Immunol 186:3113–3119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barzon L, Lavezzo E, Militello V, Toppo S, Palù G (2011) Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 12:7861–7884

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beerli RR, Rader C (2010) Mining human antibody repertoires. MAbs 2:365–378

    Google Scholar 

  • Behrens CR, Liu B (2014) Methods for site-specific drug conjugation to antibodies. MAbs 6:46–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Berkelman RL, Bryan RT, Osterholm MT, LeDuc JW, Hughes JM (1994) Infectious disease surveillance: a crumbling foundation. Science 264:368–370

    Article  PubMed  CAS  Google Scholar 

  • Berry JD, Gaudet RG (2011) Antibodies in infectious diseases: polyclonals, monoclonals and niche biotechnology. New Biotechnol 28:489–501

    Article  CAS  Google Scholar 

  • Boruah BM, Liu D, Ye D, Gu TJ, Jiang CL, Qu M, Wright E, Wang W, He W, Liu C, Gao B (2013) Single domain antibody multimers confer protection against rabies infection. PLoS ONE 8:e71383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boulter-Bitzer JI, Lee H, Trevors JT (2009) Single-chain variable fragment antibodies selected by phage display against the sporozoite surface antigen P23 of Cryptosporidium parvum. J Parasitol 95:75–81

    Article  PubMed  CAS  Google Scholar 

  • Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357

    Article  PubMed  CAS  Google Scholar 

  • Chahboun S, Hust M, Liu Y, Pelat T, Miethe S, Helmsing S, Jones RG, Sesardic D, Thullier P (2011) Isolation of a nanomolar scFv inhibiting the endopeptidase activity of botulinum toxin A, by single-round panning of an immune phage-displayed library of macaque origin. BMC Biotechnol 11:113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316

    Article  PubMed  CAS  Google Scholar 

  • Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G, Karita E, Mwambarangwe L, Braunstein SL, van de Wijgert J, Sahabo R, Justman JE, El-Sadr W, Sia SK (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Cho I-H, Paek E-H, Lee H, Kang JY, Kim TS, Paek S-H (2007) Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Anal Biochem 365:14–23

    Article  PubMed  CAS  Google Scholar 

  • Christensen PA, Danielczyk A, Ravn P, Larsen M, Stahn R, Karsten U, Goletz S (2009) Modifying antibody specificity by chain shuffling of V/V between antibodies with related specificities. Scand J Immunol 69:1–10

    Article  PubMed  CAS  Google Scholar 

  • de Kruif J, Terstappen L, Boel E, Logtenberg T (1995) Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc Natl Acad Sci USA 92:3938–3942

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza EB, Cload ST, Pendergrast PS, Sah DW (2009) Novel therapeutic modalities to address nondrugable protein interaction targets. Neuropsychopharmacol 34:142–158

    Article  Google Scholar 

  • Di Niro R, Sulic A-M, Mignone F, D’Angelo S, Bordoni R, Iacono M, Marzari R, Gaiotto T, Lavric M, Bradbury ARM, Bianone L, Zevin-Sonkin D, De Bellis G, Santoro C, Sblattero D (2010) Rapid interactome profiling by massive sequencing. Nucleic Acids Res 38:e110

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  Google Scholar 

  • Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, Yang K, Setubal JC, Pasqualini R, Arap W (2009) Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS ONE 4:e8338

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond DA, Iverson BL, Georgiou G, Arnold FH (2005) Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. J Mol Biol 350:806–816

    Article  PubMed  CAS  Google Scholar 

  • Duan T, Ferguson M, Yuan L, Xu F, Li G (2009) Human monoclonal Fab antibodies against West Nile Virus and its neutralizing activity analyzed in vitro and in vivo. J Antivir Antiretrovir 1:36–42

    Article  PubMed  CAS  Google Scholar 

  • Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury AR (2012) Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS ONE 7:e49535

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fujii R, Kitaoka M, Hayashi K (2004) One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Res 32:e145

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukushi S, Nakauchi M, Mizutani T, Saijo M, Kurane I, Morikawa S (2012) Antigen-capture ELISA for the detection of Rift Valley fever virus nucleoprotein using new monoclonal antibodies. J Virol Methods 180:68–74

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Ippolito GC, Beausang J, Busse CE, Wardemann H, Quake SR (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glökler J, Schütze T, Konthur Z (2010) Automation in the high-throughput selection of random combinatorial libraries-Different approaches for select applications. Molecules 15:2478–2490

    Article  PubMed  Google Scholar 

  • Gonzalez-Munoz A, Bokma E, O’Shea D, Minton K, Strain M, Vousden K, Rossant C, Jermutus L, Minter R (2012) Tailored amino acid diversity for the evolution of antibody affinity. MAbs 4:664–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Hairul Bahara NH, Tye GJ, Choong YS, Ong EBB, Ismail A, Lim TS (2013) Phage display antibodies for diagnostic applications. Biologicals 41:209–216

    Article  PubMed  CAS  Google Scholar 

  • Hammers CM, Stanley JR (2014) Antibody phage display: technique and applications. J Invest Dermatol 134:e17

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoe LN, Wan KL, Nathan S (2005) Construction and characterization of recombinant single-chain variable fragment antibodies against Toxoplasma gondii MIC2 protein. Parasitology 131:759–768

    Article  PubMed  CAS  Google Scholar 

  • Holland EG, Buhr DL, Acca FE, Alderman D, Bovat K, Busygina V, Kay BK, Weiner MP, Kiss MM (2013) AXM mutagenesis: an efficient means for the production of libraries for directed evolution of proteins. J Immunol Methods 394:55–61

    Article  PubMed  CAS  Google Scholar 

  • Jayaram N, Bhowmick P, Martin AC (2012) Germline VH/VL pairing in antibodies. Protein Eng Des Sel 25:523–529

    Article  PubMed  CAS  Google Scholar 

  • Jung Y, Jeong JY, Chung BH (2008a) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701

    Article  PubMed  CAS  Google Scholar 

  • Jung YS, Matsumoto SE, Katakura Y, Yamashita M, Tomimatsu K, Kabayama S, Teruya K, Shirahata S (2008b) Generation of human monoclonal antibodies against Propionibacterium acnes by applying the phage display method to human peripheral blood mononuclear cells immunized in vitro. Cytotechnology 57:169–175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kehoe JW, Whitaker B, Bethea D, Lacy ER, Boakye K, Santulli-Marotto S, Ryan MH, Feng Y, Wheeler JC (2014) Isolation and optimization for affinity and biophysical characteristics of anti-CCL17 antibodies from the VH1-69 germline gene. Protein Eng Des Sel 27:199–206

    Article  PubMed  CAS  Google Scholar 

  • Klooster R, Maassen BT, Stam JC, Hermans PW, Ten Haaft MR, Detmers FJ, de Haard HJ, Post JA, Theo Verrips C (2007) Improved anti-IgG and HSA affinity ligands: clinical application of VHH antibody technology. J Immunol Methods 324:1–12

    Article  PubMed  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  • Konthur Z, Wilde J, Lim TS (2010) Semi-automated magnetic bead-based antibody selection from phage display libraries. In: Kontermann R, Dübel S (eds) Antibody Engineering. Springer, Heidelberg, pp 267–287

    Chapter  Google Scholar 

  • Kramer RA, Marissen WE, Goudsmit J, Visser TJ, Clijsters-Van der Horst M, Bakker AQ, de Jong M, Jongeneelen M, Thijsse S, Backus HHJ, Rice AB, Weldom WC, Rupprecht CE, Dietzshold B, Bakker ABH, de Kruif J (2005) The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries. Eur J Immunol 35:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhu Z (2010) Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin 31:1198–1207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury AR, Pavlik P (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS ONE 6:e27756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lim BN, Choong YS, Ismail A, Glokler J, Konthur Z, Lim TS (2012) Directed evolution of nucleotide-based libraries using lambda exonuclease. Biotechniques 53:357–564

    Article  PubMed  CAS  Google Scholar 

  • Litvak-Greenfeld D, Benhar I (2012) Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 64:1782–1799

    Article  PubMed  CAS  Google Scholar 

  • Loh Q, Bahara NH, Choong YS, Lim TS (2012) Assembly of highly diverse genes using degenerate oligonucleotides by temperature cascade. Anal Biochem 431:54–56

    Article  PubMed  CAS  Google Scholar 

  • Lou J, Marks JD (2010) Affinity maturation by chain shuffling and site directed mutagenesis. In: Kontermann R, Dübel S (eds) Antibody Engineering. Springer, Heidelberg, pp 377–396

    Chapter  Google Scholar 

  • Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260:359–368

    Article  PubMed  CAS  Google Scholar 

  • Lundquist R, Nielsen LK, Jafarshad A, SoeSoe D, Christensen LH, Druilhe P, Dziegiel MH (2006) Human recombinant antibodies against Plasmodium falciparum merozoite surface protein 3 cloned from peripheral blood leukocytes of individuals with immunity to malaria demonstrate antiparasitic properties. Infect Immun 74:3222–3231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57:486–498

    Article  PubMed  CAS  Google Scholar 

  • Moreland NJ, Susanto P, Lim E, Tay MY, Rajamanonmani R, Hanson BJ, Vasudevan SG (2012) Phage display approaches for the isolation of monoclonal antibodies against dengue virus envelope domain III from human and mouse derived libraries. Int J Mol Sci 13:2618–2635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mu B, Huang X, Bu P, Zhuang J, Cheng Z, Feng J, Yang D, Dong C, Zhang J, Yan X (2010) Influenza virus detection with pentabody-activated nanoparticles. J Virol Methods 169:282–289

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27:331–337

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  PubMed  CAS  Google Scholar 

  • Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M (2009) A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillay V, Gan HK, Scott AM (2011) Antibodies in oncology. N Biotechnol 28:518–529

    Article  PubMed  CAS  Google Scholar 

  • Pleass RJ, Holder AA (2005) Opinion: antibody-based therapies for malaria. Nat Rev Microbiol 3:893–899

    Article  PubMed  CAS  Google Scholar 

  • Popkov M, Rader C, Barbas CF 3rd (2004) Isolation of human prostate cancer cell reactive antibodies using phage display technology. J Immunol Methods 291:137–151

    Article  PubMed  CAS  Google Scholar 

  • Ravn U, Gueneau F, Baerlocher L, Osteras M, Desmurs M, Malinge P, Magistrelli G, Farinelli L, Kosco-Vilbois M, Fischer N (2010) By-passing in vitro screening-next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38:e193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roda A, Guardigli M (2012) Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem 402:69–76

    Article  PubMed  CAS  Google Scholar 

  • Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200

    Article  PubMed  CAS  Google Scholar 

  • Saggy I, Wine Y, Shefet-Carasso L, Nahary L, Georgiou G, Benhar I (2012) Antibody isolation from immunized animals: comparison of phage display and antibody discovery via V gene repertoire mining. Protein Eng Des Sel 25:539–549

    Article  PubMed  CAS  Google Scholar 

  • Saylor C, Dadachova E, Casadevall A (2009) Monoclonal antibody-based therapies for microbial diseases. Vaccine 27(Suppl 6):G38–G46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sblattero D, Bradbury A (2000) Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18:75–80

    Article  PubMed  CAS  Google Scholar 

  • Schirrmann T, Meyer T, Schutte M, Frenzel A, Hust M (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16:412–426

    Article  PubMed  CAS  Google Scholar 

  • Schwenk JM, Lindberg J, Sundberg M, Uhlén M, Nilsson P (2007) Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol Cell Proteomics 6:125–132

    Article  PubMed  CAS  Google Scholar 

  • Siegel DL, Chang TY, Russell SL, Bunya VY (1997) Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J Immunol Methods 206:73–85

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Sotelo P, Collazo N, Zuniga R, Gutierrez-Gonzalez M, Catalan D, Ribeiro CH, Aguillon JC, Molina MC (2012) An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification. MAbs 4:542–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiniger SCJ, Altobell LJ 3rd, Zhou B, Janda KD (2007) Selection of human antibodies against cell surface-associated oligomeric anthrax protective antigen. Mol Immunol 44:2749–2755

    Article  PubMed  CAS  Google Scholar 

  • Ta HT, Peter K, Hagemeyer CE (2012) Enzymatic antibody tagging: toward a universal biocompatible targeting tool. Trends Cardiovasc Med 22:105–111

    Article  PubMed  CAS  Google Scholar 

  • Teicher BA, Chari RVJ (2011) Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res 17:6389–6397

    Article  PubMed  CAS  Google Scholar 

  • ter Meulen J (2011) Monoclonal antibodies in infectious diseases: clinical pipeline in 2011. Infect Dis Clin North Am 25:789–802

    Article  PubMed  Google Scholar 

  • Thie H, Meyer T, Schirrmann T, Hust M, Dubel S (2008) Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9:439–446

    Article  PubMed  CAS  Google Scholar 

  • Thieme F, Engler C, Kandzia R, Marillonnet S (2011) Quick and clean cloning: a ligation-independent cloning strategy for selective cloning of specific PCR products from non-specific mixes. PLoS ONE 6:e20556

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • T’Hoen PAC, Jirka SMG, ten Broeke BR, Schultes EA, Aguilera B, Pang KH, Heemskerk H, Aartsma-Rus A, van Ommen GJ, den Dunnen JT (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631

    Article  Google Scholar 

  • Turunen L, Takkinen K, Soderlund H, Pulli T (2009) Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen 14:282–293

    Article  PubMed  CAS  Google Scholar 

  • Uchtenhagen H, Schiffner T, Bowles E, Heyndrickx L, LaBranche C, Applequist SE, Jansson M, De Silva T, Back JW, Achour A, Scarlatti G, Fomsgaard A, Montefiori D, Stewart-Jones G, Spetz AL (2014) Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein. J Immunol 192:5802–5812

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Keck Z-Y, Saha A, Xia J, Conrad F, Lou J, Eckart M, Marks JD, Foung SKH (2011) Affinity maturation to improve human monoclonal antibody neutralization potency and breadth against hepatitis C virus. J Biol Chem 286:44218–44233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang R, Fang S, Wu D, Lian J, Fan J, Zhang Y, Wang S, Lin W (2012) Screening for a single-chain variable-fragment antibody that can effectively neutralize the cytotoxicity of the Vibrio parahaemolyticus thermolabile hemolysin. Appl Environ Microbiol 78:4967–4975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Y, Li P, Majkova Z, Bever CR, Kim HJ, Zhang Q, Dechant JE, Gee SJ, Hammock BD (2013) Isolation of alpaca anti-idiotypic heavy-chain single-domain antibody for the aflatoxin immunoassay. Anal Chem 85:8298–8303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weiner LM, Surana R, Wang S (2010) Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10:317–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willats WGT (2002) Phage display: practicalities and prospects. Plant Mol Biol 50:837–854

    Article  PubMed  CAS  Google Scholar 

  • Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  PubMed  CAS  Google Scholar 

  • Yoon H, Song JM, Ryu CJ, Kim YG, Lee EK, Kang S, Kim SJ (2012) An efficient strategy for cell-based antibody library selection using an integrated vector system. BMC Biotechnol 12:62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang JL, Gou JJ, Zhang ZY, Jing YX, Zhang L, Guo R, Yan P, Cheng NL, Niu B, Xie J (2006) Screening and evaluation of human single-chain fragment variable antibody against hepatitis B virus surface antigen. Hepatobiliary Pancreat Dis Int 5:237–241

    PubMed  CAS  Google Scholar 

  • Zhang Y, Yuan T, Li J, Xu J, Shao Y, Chen Z, Zhang MY (2013) The potential of the human immune system to develop broadly neutralizing HIV-1 antibodies: implications for vaccine development. AIDS 27:2529–2539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support by the Malaysian Ministry of Science, Technology and Innovation ScienceFund Grant (Grant No. 305/CIPPM/613229) and USM Short Term Research Grant (Grant No. 304/CIPPM/6312060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theam Soon Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, B.N., Tye, G.J., Choong, Y.S. et al. Principles and application of antibody libraries for infectious diseases. Biotechnol Lett 36, 2381–2392 (2014). https://doi.org/10.1007/s10529-014-1635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1635-x

Keywords

Navigation