Skip to main content
Log in

Characterization of an acid-labile, thermostable β-glycosidase from Thermoplasma acidophilum

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A recombinant putative β-galactosidase from Thermoplasma acidophilum was purified as a single 57 kDa band of 82 U mg−1. The molecular mass of the native enzyme was 114 kDa as a dimer. Maximum activity was observed at pH 6.0 and 90°C. The enzyme was unstable below pH 6.0: at pH 6 its half-life at 75°C was 28 days but at pH 4.5 was only 13 h. Catalytic efficiencies decreased as p-nitrophenyl(pNP)-β-d-fucopyranoside (1067) > pNP-β-d-glucopyranoside (381) > pNP-β-d-galactopyranoside (18) > pNP-β-d-mannopyranoside (11 s−1 mM−1), indicating that the enzyme was a β-glycosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhat M, Bhat T (1997) Cellulose degradation enzyme and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  PubMed  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    Article  PubMed  CAS  Google Scholar 

  • Chuankhayan P, Rimlumduan T, Svasti J, Cairns JR (2007) Hydrolysis of soybean isoflavonoid glycosides by Dalbergia beta-glucosidases. J Agric Food Chem 55:2407–2412

    Article  PubMed  CAS  Google Scholar 

  • Cobucci-Ponzano B, Moracci M, Di Lauro B, Ciaramella M, D’Avino R, Rossi M (2002) Ionic network at the C-terminus of the beta-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus: functional role in the quaternary structure thermal stabilization. Proteins 48:98–106

    Article  PubMed  CAS  Google Scholar 

  • D’Auria S, Morana A, Febbraio F, Vaccaro C, De Rosa M, Nucci R (1996) Functional and structural properties of the homogeneous beta-glycosidase from the extreme thermoacidophilic archaeon Sulfolobus solfataricus expressed in Saccharomyces cerevisiae. Protein Expr Purif 7:299–308

    Article  PubMed  Google Scholar 

  • D’Auria S, Rossi M, Nucci R, Irace G, Bismuto E (1997) Perturbation of conformational dynamics, enzymatic activity, and thermostability of beta-glycosidase from archaeon Sulfolobus solfataricus by pH and sodium dodecyl sulfate detergent. Proteins 27:71–79

    Article  PubMed  Google Scholar 

  • D’Auria S, Moracci M, Febbraio F, Tanfani F, Nucci R, Rossi M (1998) Structure-function studies on beta-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. Biochimie 80:949–957

    Article  PubMed  Google Scholar 

  • Dion M, Fourage L, Hallet JN, Colas B (1999) Cloning and expression of a beta-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj J 16:27–37

    Article  PubMed  CAS  Google Scholar 

  • Gabelsberger J, Liebl W, Schleifer K (1993) Purification and properties of a recombinant beta-glucosides of the hyper thermophilic bacterium Thermotoga maritima. Appl Micobiol Biotechnol 40:44–52

    CAS  Google Scholar 

  • Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312

    Article  PubMed  CAS  Google Scholar 

  • Leite RS, Gomes E, da Silva R (2007) Characterization and comparison of thermostability of purified beta-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem 42:1101–1106

    Article  CAS  Google Scholar 

  • Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y, Honda K (2000) Novel substrate specificity of a membrane-bound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS Lett 467:195–200

    Article  PubMed  CAS  Google Scholar 

  • Petzelbauer I, Nidetzky B, Haltrich D, Kulbe KD (1999) Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable beta-glycosidases. Biotechnol Bioeng 64:322–332

    Article  PubMed  CAS  Google Scholar 

  • Takase M, Horikoshi K (1988) A thermostable beta-glucosidase isolated from a bacterial species of the genus Thermus. Appl Microbiol Biotechnol 29:55–60

    Article  CAS  Google Scholar 

  • Venturi LL, Polizeli Mde L, Terenzi HF, Furriel Rdos P, Jorge JA (2002) Extracellular beta-d-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties. J Basic Microbiol 42:55–66

    Article  PubMed  CAS  Google Scholar 

  • Zverlov VV, Volkov IY, Velikodvorskaya TV, Schwarz WH (1997) Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable beta-glucosidase that is a laminaribiase. Microbiology 143:3537–3542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with the support of ‘Forest Science and Technology Projects (Project No. S210707L010120)’ provided by Korea Forest Service, by the 21C Frontier Project for Microbial Genomics, Ministry of Science and Technology, and by the Korea Research Foundation Grant (MOEHRD) (KRF-2006-351-D00012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Park, AR., Lee, JK. et al. Characterization of an acid-labile, thermostable β-glycosidase from Thermoplasma acidophilum . Biotechnol Lett 31, 1457–1462 (2009). https://doi.org/10.1007/s10529-009-0018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0018-1

Keywords

Navigation