Skip to main content
Log in

Expression Analysis of AUX/IAA Family Genes in Apple Under Salt Stress

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Members of the auxin/indoleacetic acid (Aux/IAA) gene family in plants are primary auxin-responsive genes that play important roles in many aspects of plant development and in responses to abiotic stress. Recently, 33 Aux/IAA have been identified in the apple genome. The biological responses of MdIAAs to salt stress are still unknown. In this study, Malus zumi, Malus baccata, and Malus × domestica ‘Fuji’ plantlets were subjected to salt stress by supplementing hydroponic media with NaCl at various concentrations. M. zumi showed the strongest salt resistance, followed by ‘Fuji’, and M. baccata was the most sensitive to salt stress. Tissue-specific expression profiles of MdIAAs were determined by quantitative real-time polymerase chain reaction. When apple plantlets were subjected to salt stress, most of salt-responsive MdIAAs were up-regulated by 1 h, 3 h, and 6 h in roots, shoot tips, and leaves, respectively. Highly expressed MdIAAs in roots, especially for M. zumi, consisted with the salt tolerance of apple rootstocks. Transgenic apple calli were tolerant to salt stress when over-expressed salt-responsive genes, MdIAA8, -9, and -25. These results provide clues about salt resistance in these three Malus species, which helps apple breeding of salt tolerance by genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali A, Yun DJ (2017) Salt stress tolerance; what do we learn from halophytes? J Plant Biol 60:431–439

    Article  CAS  Google Scholar 

  • Aras S (2020) Silicon nutrition in alleviating salt stress in apple plant. Acta Sci Pol Hortorum Cultus 19:3–10

    Article  Google Scholar 

  • Asif M, Trivedi P, Solomos T et al (2006) Isolation of high-quality RNA from apple (Malus domestica) fruit. J Agric Food Chem 54:5227–5229

    Article  CAS  PubMed  Google Scholar 

  • Cakir B, Kilickaya O, Olcay AC (2013) Genome-wide analysis of Aux/IAA genes in Vitis vinifera: cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol Plant 35:365–377. https://doi.org/10.1007/s11738-012-1079-7

    Article  CAS  Google Scholar 

  • Chen H, Jiang JG (2009) Osmotic responses of Dunaliella to the changes of salinity. J Cell Physiol 219:251–258

    Article  CAS  PubMed  Google Scholar 

  • Cheng SF, Huang YL, Zhu N, Zhao Y (2014) The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 549:266–274

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York. https://doi.org/10.1007/978-1-4614-9466-9_4

    Chapter  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Liu J, Zhai L et al (2019) Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant Cell Environ 42:424–436

    Article  CAS  PubMed  Google Scholar 

  • Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    Article  CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ. https://doi.org/10.1016/S0140-6736(00)73482-9

    Article  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzinger A, Pichrtova M (2016) Abiotic stress tolerance of charophyte green algae: new challenges for omics techniques. Front Plant Sci 7:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu DG, Sun MH, Sun CH et al (2015) Conserved vacuolar H+-ATPase subunit B1 improves salt stress tolerance in apple calli and tomato plants. Sci Hortic 197:107–116

    Article  CAS  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavnagh TA, Bevan MW (1987) GUS—fusions-beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang AW, Zhang SW, Sun YW, Chu XR, Zhao Y, Xu XF, Kong J (2010) Expression analysis of WRKY family in response to salt stress in Malus zumi Mats. Acta Hortic Sin 37:1213–1219. https://doi.org/10.3724/SP.J.1142.2010.40491

    Article  CAS  Google Scholar 

  • Jung H, Lee DK, Choi YD, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku YS, Mariz S, Cheung MY, Lam HM (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar R, Agarwal P, Pareek A et al (2015) Genomic survey, gene expression, and interaction analysis suggest diverse roles of ARF and Aux/IAA proteins in Solanaceae. Plant Mol Biol Rep 33:1552–1572

    Article  CAS  Google Scholar 

  • Lakehal A, Chaabouni S, Cavel E, Le HR, Ranjan A, Raneshan Z, Novak O, Pacurar D, Perrone I, Jobert F (2019) A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Mol Plant 12:499–1514

    Article  CAS  Google Scholar 

  • Li QT, Liu J, Tan DX, Allan AC et al (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. Int J Mol Sci 14:21053–21070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Dang CX, Ye YX, Wang ZX, Hu BL, Zhang F et al (2020) Overexpression of grapevine VvIAA18 gene enhanced salt tolerance in tobacco. Int J Mol Sci 21:4

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Ortiz-Castro R, Ruiz-Herrera LF, Juarez CV, Hernandez-Madrigal F, Carreon-Abud Y, Martinez-Trujillo M (2015) Chromate induces adventitious root formation via auxin signaling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. Biometals 28:353–365

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munro KD (2004) Low temperature effects on ubiquinone content, respiration rates and lipid peroxidation levels of etiolated seeding of two differently chilling sensitive. Physiol Plant 121:488–497

    Article  CAS  Google Scholar 

  • Peng Z, He S, Gong W et al (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 15:760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salehin M, Li BH, Tang M, Katz E, Song L, Ecker JR et al (2019) Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat Commun 4021:10

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springer Harbor, New York

    Google Scholar 

  • Sara K, Abbaspour H, Sinaki JM, Makarian H (2012) Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). J Stress Physiol Biochem 8:160–169

    Google Scholar 

  • Shi HT, Liu W, Wei YX, Ye TT (2017) Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J Exp Bot 68:1239–1249

    Article  CAS  PubMed  Google Scholar 

  • Song YL, You J, Xiong LZ (2009a) Characterization of the OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol 70:297–309

    Article  CAS  PubMed  Google Scholar 

  • Song YL, Wang L, Xiong LZ (2009b) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591

    Article  CAS  PubMed  Google Scholar 

  • Tao S, Estelle M (2018) Mutational studies of the Aux/IAA proteins in Physcomitrella reveal novel insights into their function. New Phytol 218:1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gomez-Rodriguez MV et al (2007) Nitrosative stress in plants. FEBS Lett 581:453–461

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833

    Article  CAS  PubMed  Google Scholar 

  • Wang SK, Bai YH, Shen CJ, Wu YR, Zhang SN, Jiang DA, Guilfoyle Tom J, Chen M, Qi YH (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 10:533–546

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Gu KD, Han PL et al (2019a) Apple ethylene response factor MdERF11 confers resistance to fungal pathogen Botryosphaeria dothidea. Plant Sci 291:110351

    Article  PubMed  CAS  Google Scholar 

  • Wang LM, Xu K, Li YZ, Cai WB, Zhao YN, Yu BY, Zhu YD (2019b) Genome wide identification of the Aux/IAA family genes (MdIAA) and functional analysis of MdIAA18 for apple tree ideotype. Biochem Genet 57:709–733

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen X, Wang Q et al (2019c) MdBZR1 and MdBZR1–2like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple. Front Plant Sci 10:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen T, Dong L, Wang L et al (2018) Changes in root architecture and endogenous hormone levels in two Malus rootstocks under alkali stress. Sci Hortic 235:198–204

    Article  CAS  Google Scholar 

  • Wu J, Peng Z, Liu SY, He YJ, Cheng L, Kong FL, Wang J, Lu G (2012) Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics 287:295–311

    Article  CAS  PubMed  Google Scholar 

  • Xu HF, Wang N, Liu JX, Qu CZ, Wang YC, Jiang SH, Lu NL, Wang DY, Zhang ZY, Chen XS (2017) The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Mol Biol 94:149–165

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jiang DA, Xu HX et al (2006) Cyclic electron flow around photosystem I is required for adaptation to salt stress in wild soybean species Glycine cyrtolaba ACC547. Biol Planta 50:586–590

    Article  CAS  Google Scholar 

  • Yang HB, Yu YC, Wang Y, Xu XF, Han ZH (2019) Distribution and re-transportation of sodium in three Malus species with different salt tolerance. Plant Physiol Biochem 136:162–168

    Article  CAS  PubMed  Google Scholar 

  • Yin R, Bai TH, Ma FW, Wang XJ, Li YH, Yue ZY (2010) Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Sci Hortic 126:247–252

    Article  CAS  Google Scholar 

  • Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T (2013) Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics. https://doi.org/10.1186/1471-2164-14-297

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Chen LL, Sun YW, Zhao LN, Zheng XF, Yang QY, Zhang XY (2007) Investigating proteome and transcriptome defense response of apples induced by Yarrowia lipolytica. Mol Plant Microbe Interact 30:301–311

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Chen J, Zheng HL (2012) Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiol 32:1378–1388

    Article  CAS  PubMed  Google Scholar 

  • Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signaling and abiotic stress responses. J Exp Bot 66:4863–4871

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this work was from the National Natural Science Foundation of China (Project No. 31672109). The authors are grateful to Dr. Miaoyu Song for providing Orin calli. We thank Jennifer Smith, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuandi Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, L., Yu, B. et al. Expression Analysis of AUX/IAA Family Genes in Apple Under Salt Stress. Biochem Genet 60, 1205–1221 (2022). https://doi.org/10.1007/s10528-021-10158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10158-4

Keywords

Navigation