Skip to main content
Log in

Response of Pseudomonas tolaasii, the causal agent of mushroom brown blotch disease to the volatile compounds produced by endofungal bacteria

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) produced by bacteria have significant potential to control phytopathogens. In this study, the VOCs produced by endofungal bacteria Pseudomonas sp. Bi1, Bacillus sp. De3, Pantoea sp. Ma3 and Pseudomonas sp. De1 isolated from wild growing mushrooms were evaluated in vitro for their antagonistic activity against Pseudomonas tolaasii Pt18, the causal agent of mushroom brown blotch disease. The gas chromatography–mass spectrometry (GC–MS) analysis revealed that strains Pseudomonas sp. Bi1, Pseudomonas sp. De1, Bacillus sp. De3 and Pantoea sp. Ma3 produced eight, sixteen, nine, and twelve VOCs, respectively. All antagonistic endofungal bacteria produced VOCs which significantly reduced brown blotch symptoms on mushroom caps and inhibited the growth of P. tolaasii Pt18 at the varying levels. Scanning electron microscopy revealed severe morphological changes in cells of P. tolaasii Pt18 following exposure to the VOCs of Pseudomonas sp. Bi1 and De1. Furthermore, The VOCs produced by endofungal bacteria significantly reduced swarming, swimming, twitching, chemotaxis motility and biofilm formation by P. tolaasii Pt18 cells, which are essential contributors to pathogenicity. This is to first report about the inhibition effects of VOCs produced by antagonistic bacteria on virulence traits of P. tolaasii. Our findings provide new insights regarding the potential of antibacterial VOCs as a safe fumigant to control mushroom brown blotch disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aslani MA, Harighi B, Abdollahzadeh J (2018) Screening of endofungal bacteria isolated from wild growing mushrooms as potential biological control agents against brown blotch and internal stipe necrosis diseases of Agaricus bisporus. Biol Control 119:20–26

    Article  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  CAS  PubMed  Google Scholar 

  • Begum IF, Mohankumar R, Jeevan M, Ramani K (2016) GC–MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol 56:426–432

    Article  Google Scholar 

  • Castiblanco LF, Sundin GW (2016) New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol 58:362–372

    Article  CAS  PubMed  Google Scholar 

  • Cole ALJ, Skellerup MV (1986) Ultrastructure of the interaction of Agaricus bisporus and Pseudomonas tolaasii. Trans Br Mycol Soc 87:314–316

    Article  Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chemin L (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumors on tomato plants. J Appl Microbiol 110:341–352

    Article  CAS  PubMed  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Fletcher JT, Gaze RH (2007) Mushroom pest and disease control: a colour handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • Ghasemi S, Harighi B, Azizi A, Mojarrab M (2020) Reduction of brown blotch disease and tyrosinase activity in Agaricus bisporus infected by Pseudomonas tolaasii upon treatment with endofungal bacteria. Physiol Mol Plant Pathol 110:101474

    Article  CAS  Google Scholar 

  • Grewal SIS, Rainey PB (1991) Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J Gen Microbiol 137:2761–2768

    Article  CAS  PubMed  Google Scholar 

  • King EO, Ward K, Raney S, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Koç AN, Silici S, Mutlu-Sariguzel F, Sagdic O (2007) Antifungal activity of propolis in four different fruit juices. Food Technol Biotechnol 45:57–61

    Google Scholar 

  • Malcolm HD (1981) A toxin associated with bacterial blotch of mushrooms. Mushroom Sci 11:324–330

    Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  CAS  PubMed  Google Scholar 

  • Nair NG, Fahy PC (1972) Bacteria antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. J Appl Bacteriol 35:439–442

    Article  CAS  PubMed  Google Scholar 

  • Olivier JM, Guillau JS, Martin D (1978) Study of a bacterial disease of mushroom caps. In: Proceedings of the 4th international conference on plant pathogenic bacteria, INRA, Angers, France, pp 903–916

  • Osdaghi E, Martins SJ, Ramos-Sepulveda L, Vieira FR, Pecchia JA, Beyer DM, Bell TH, Yang Y, Hockett KL, Bull CT (2019) 100 years since tolaas: bacterial blotch of mushrooms in the 21st century. Plant Dis 103:2714–2732

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  • Park HB, Lee J, Kloepper WB, Ryu CM (2013) Exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav 8:e24619

    Article  PubMed  Google Scholar 

  • Rainey PB (1991) Phenotypic variation of Pseudomonas putida and P. tolaasii affects attachment to Agaricus bisporus mycelium. J Gen Microbiol 137:2769–2779

    Article  CAS  PubMed  Google Scholar 

  • Rainey PB, Brodey CL, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol Plant Pathol 39:57–70

    Article  CAS  Google Scholar 

  • Rajer FU, Wu H, Xie Y, Xie S, Raza W, Tahir HAS, Gao X (2017) Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato. Microbiology 163:523–530

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016a) Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016b) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson R, Houdeau G, Khanna P, Guillaumes J, Olivier JM (1987) Variability of fluorescent Pseudomonas populations in composts and casing soils used for mushroom cultures. Dev Crop Sci 10:19–26

    Article  Google Scholar 

  • Sandin M, Allenmark S, Edebo L (1990) Selective toxicity of alkanolamines. Antimicrob Agents Chemother 34:491–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxon EB, Jackson RW, Bhumbra S, Smith T, Sockett RE (2014) Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiol 14:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9:2329–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Shirata A (1996) Production of volatile components by Pseudomonas tolaasii and their toxic activity. Ann Phytopathol Soc Jpn 62:185–193

    Article  Google Scholar 

  • Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ (1999) Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 23:591–614

    Article  CAS  PubMed  Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Niu Y, Huo R, Gao X (2017) Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci Rep 7:40481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilocca B, Cao A, Migheli Q (2020) Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front Microbiol 11:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto T, Murata H, Shirata A (2002) Identification of non-pseudomonad bacteria from fruit bodies of wild agaricales fungi that detoxify tolaasin produced by Pseudomonas tolaasii. Biosci Biotechnol Biochem 66:2201–2208

    Article  CAS  PubMed  Google Scholar 

  • Wong WC, Preece TF (1982) Pseudomonas tolaasii in cultivated mushroom (Agaricus bisporus) crops: numbers of the bacterium and symptom development on mushrooms grown in various environments after artificial inoculation. J Appl Bacteriol 53:87–96

    Article  Google Scholar 

  • Xie A, Zang H, Wu H, Rajer FU, Gao X (2018) Antibacterial effects of volatiles produced by Bacillus D13 against Xanthomonas oryzae pv. oryzae. Mol Plant Pathol 19:49–58

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78:5942–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarenejad F, Yakhchali B, Rasooli I (2012) Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol 28:99–104

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97:9525–9534

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was supported by The University of Kurdistan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors have been personally and actively involved in substantive work leading to the manuscript.

Corresponding author

Correspondence to Behrouz Harighi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This research does not involved human participants and animals.

Additional information

Handling Editor: Jane Debode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Harighi, B., Mojarrab, M. et al. Response of Pseudomonas tolaasii, the causal agent of mushroom brown blotch disease to the volatile compounds produced by endofungal bacteria. BioControl 66, 421–432 (2021). https://doi.org/10.1007/s10526-020-10071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10071-6

Keywords

Navigation