Skip to main content
Log in

Indirect effects between shared prey: Predictions for

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Suppression of a target prey by a predator can depend on its surrounding community, including the presence of nontarget, alternative prey. Basic theoretical models of two prey species that interact only via a shared predator predict that adding an alternative prey should increase predator numbers and ultimately lower target pest densities as compared to when the target pest is the only prey. While this is an alluring prediction, it does not explain the numerous responses empirically observed. To better understand and predict the indirect interactions produced by shared predation, we explore how additional prey species affect three broad ecological mechanisms, the predator's reproductive, movement, and functional responses. Specifically, we review current theoretical models of shared predation by focusing on these mechanisms, and make testable predictions about the effects of shared predation. We find that target predation is likely to be higher in the two prey system because of predator reproduction, especially when: predators are prey limited, alternative or total prey density is high, or alternative prey are available over time. Target predation may also be greater because of predator movement, but only under certain movement rules and spatial distributions. Predator foraging behavior is most likely to cause lower target predation in the two-prey system, when per capita predation is limited by something other than prey availability. It is clear from this review that no single theoretical generalization will accurately predict community-level effects for every system. However, we can provide testable hypotheses for future empirical and theoretical investigations of indirect interactions and help enhance their potential use in biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams, P. A.,1987.Indirect interactions between species that share a predator:varieties of indirect effects. In:W. C. Kerfoot and A. Sih (eds),Predation:Direct and Indirect Impacts on Aquatic Communities.University Press of New England, Hanover, NH. pp.38–54.

    Google Scholar 

  • Abrams, P. A.,1999.Is predator-mediated coexistence possible in unstable systems?Ecology80:608–621.

    Google Scholar 

  • Abrams, P. A.,R. D. Holt and J. D. Roth,1998.Apparent competition or apparent mutualism?Shared predation when populations cycle. Ecology79:201–212.

    Google Scholar 

  • Abrams, P. A. andH. Matsuda,1996.Positive indirect effects between prey species that share predators.Ecology77:610–616.

    Google Scholar 

  • Allee, W. C.,1931.Animal Aggregations.A Study in General Sociology.University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Andow, D. A.,1991.Vegetational diversity and arthropod population response.Annu. Rev. Entomol.36:561–586.

    Google Scholar 

  • Billick, I. andT. J. Case,1994.Higher order interactions in ecological communities: what are they and how can they be detected?Ecology75:1529–1543.

    Google Scholar 

  • Bonsall, M. B. andM. P. Hassell,1999.Parasitoid-mediated effects:apparent competi tion and the persistence of host-parasitoid assemblages.Res. Popul. Ecol.41:59–68.

    Google Scholar 

  • Chaneton, E. J. andM. B. Bonsall,2000.Enemy-mediated apparent competition: empirical patterns and the evidence.Oikos88:380–394.

    Google Scholar 

  • Charnov, E. L.,1976.Optimal foraging, the marginal value theorem.Theor. Popul. Biol. 9:129–136.

    PubMed  Google Scholar 

  • Coll, M. andM. Guershon,2002.Omnivory in terrestrial arthropods:mixing plant and prey diets.Annu. Rev. Entomol.47:267–297.

    PubMed  Google Scholar 

  • Collier, T. R.,W. W. Murdoch and R. M. Nisbet,1994.Egg load and the decision to host-feed in the parasitoid. Aphytis melinus.J. Anim. Ecol.63:299–306.

    Google Scholar 

  • Comins, H. N. andM. P. Hassell,1976.Predation in multi-prey communities.J. Theor. Biol.62:93–114.

    PubMed  Google Scholar 

  • Comins, H. N. andM. P. Hassell,1996.Persistence of multispecies host-parasitoid interactions in spatially distributed models with local dispersal.J. Theor. Biol.183:19–28.

    PubMed  Google Scholar 

  • Courchamp, F.,M. Langlais and G. Sugihara,2000.Rabbits killing birds:modelling the hyperpredation process.J. Anim. Ecol.69:154–164.

    Google Scholar 

  • Fox, L. R. andP. A. Morrow,1981.Specialization:species property or local phenomenon?Science211:887–893.

    Google Scholar 

  • Hamba ¨ck, P. A.,1998.Seasonality, optimal foraging, and prey coexistence.Am. Nat. 152:881–895.

    Google Scholar 

  • Hamba ¨ck, P. A. andC. Bjo ¨rkman,2002.Estimating the consequences of apparent competition:a method for host-parasitoid interactions.Ecology83:1591–1596.

    Google Scholar 

  • Harmon, J. P.,2003.Indirect interactions among a generalist predator and its multiple foods. Ph. D. Thesis, Department of Entomology, University of Minnesota. 184 pp.

    Google Scholar 

  • Hassell, M. P.,2000.The Spatial and Temporal Dynamics of Host-Parasitoid Interactions.Oxford University Press, Oxford.

    Google Scholar 

  • Heimpel, G. E.,C. Neuhauser and M. Hoogendoorn,2003.Effects of parasitoid fecundity and host resistance on indirect interactions among hosts sharing a parasitoid.Ecology Letters6:556–566.

    Google Scholar 

  • Hodek, I. andA. Honek,1996.Ecology of Coccinellidae.Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Holling, C. S.,1959a.The components of predation as revealed by a study of small-mammal predation of the European pine saw. y.Can. Entomol.91:293–320.

    Google Scholar 

  • Holling, C. S.,1959b.Some characteristics of simple types of predation and parasitism. Can. Entomol.91:385–398.

    Google Scholar 

  • Holt, R. D.,1977.Predation, apparent competition, and the structure of prey communities.Theor. Popul. Biol.12:197–229.

    PubMed  Google Scholar 

  • Holt, R. D.,1983.Optimal foraging and the form of the predator isocline.Am. Nat.122:521–541.

    Google Scholar 

  • Holt, R. D.,1984.Spatial heterogeneity, indirect interactions, and the coexistence of prey species.Am. Nat.124:377–406.

    Google Scholar 

  • Holt, R. D.,1987.Prey communities in patchy environments.Oikos.50:276–290. 4Holt, R. D., 1997a. Community modules. In:A. Gange and V. Brown (eds), Multitrophic Interactions in Terrestrial Systems, 36th Symposium of the British Ecological Society. Blackwell Science, Oxford. pp.333-350.

    Google Scholar 

  • Holt R. D.,1997b.From metapopulation dynamics to community structure:some consequences of spatial heterogeneity. In:I. A. Hanski and M. E. Gilpin (eds), Metapopulation Biology.Academic Press, New York, NY. pp.149–165.

    Google Scholar 

  • Holt, R. D. andM. Barfeld,2003.Impacts of temporal variation on apparent competition and coexistence in open ecosystems.Oikos101:49–58.

    Google Scholar 

  • Holt, R. D.,J. Grover and D. Tilman,1994.Simple rules for interspecific dominance in systems with exploitative and apparent competition.Am. Nat.144:741–771.

    Google Scholar 

  • Holt, R. D. andM. E. Hochberg,2001.Indirect interactions, community modules and biological control:a theoretical perspective. In:E. Wajnberg, J. K. Scott and P. C. Quimby (eds),Evaluating Indirect Ecological Effects of Biological Control.CABI Publishing, Wallinkford, Oxon, UK. pp.13–38.

    Google Scholar 

  • Holt, R. D. andB. P. Kotler,1987.Short-term apparent competition.Am. Nat.130:412–430.

    Google Scholar 

  • Holt, R. D. andJ. H. Lawton,1993.Apparent competition and enemy-free space in insect host-parasitoid communities.Am. Nat.142:623–645.

    Google Scholar 

  • Holt, R. D. andJ. H. Lawton,1994.The ecological consequences of shared natural enemies.Annu. Rev. Ecol. Syst.25:495–520.

    Google Scholar 

  • Jacob, H. S. andE. W. Evans,2000.Influence of carbohydrate foods and mating on longevity of the parasitoid Bathyplectes curculionis (Hymenoptera:Ichneumonidae). Environ. Entomol.29:1088–1095.

    Google Scholar 

  • Jervis, M.,1998.Functional and evolutionary aspects of mouthpart structure in parasitoid wasps.Biol. J. Linn. Soc.63:461–493.

    Google Scholar 

  • Jervis, M. A.,N. A. C. Kidd, M. G. Fitton, T. Huddleston and H. A. Dawah,1993. Flower-visiting by hymenopteran parasitoids.J. Nat. Hist.27:67–105.

    Google Scholar 

  • Jeschke, J. M.,M. Kopp and R. Tollrian,2002.Predator functional responses:discriminating between handling and digesting prey.Ecol. Monogr.72:95–112.

    Google Scholar 

  • Kondoh, M.,2003.High reproductive rates result in high predation risks:a mechanism promoting the coexistence of competing prey in spatially structured populations. Am. Nat.161:299–309.

    PubMed  Google Scholar 

  • Krivan, V.,1996.Optimal foraging and predator-prey dynamics.Theor. Popul. Biol.49:265–290.

    PubMed  Google Scholar 

  • Leibold, M. A.,1996.A graphical model of keystone predators in food webs:trophic regulation of abundance, incidence, and diversity patterns in communities.Am. Nat. 147:784–812.

    Google Scholar 

  • Levins, R. andR. Lewontin,1985.The Dialectical Biologist.Harvard University Press, Cambridge, MA.

    Google Scholar 

  • McGregor, R.,1997.Host-feeding and oviposition by parasitoids on hosts of different tness value:influences of egg load and encounter rate.J. Insect Behav.10:451–462.

    Google Scholar 

  • Muller, C. B. andH. C. J. Godfray,1997.Apparent competition between two aphid species.J. Anim. Ecol.66:57–64.

    Google Scholar 

  • Murdoch, W. W.,1973.The functional response of predators.J. Appl. Ecol.10:335–342.

    Google Scholar 

  • Namba, T.,A. Umemoto and E. Minami,1999.The effects of habitat fragmentation on persistence of source-sink metapopulations in systems with predators and prey or apparent competitors.Theor. Popul. Biol.56:123–137.

    PubMed  Google Scholar 

  • Noy-Meir, I.,1981.Theoretical dynamics of competitors under predation.Oecologia50:277–284.

    Google Scholar 

  • Polis, G. A.,C. A. Myers and R. D. Holt,1989.The ecology and evolution of intraguild predation:potential competitors that eat each other.Annu. Rev. Ecol. Syst.20:297–330.

    Google Scholar 

  • Rosenheim, J. A.,1998.Higher-order predators and the regulation of insect herbivore populations.Annu. Rev. Entomol.43:421–447.

    PubMed  Google Scholar 

  • Rosenheim, J. A.,H. K. Kaya, L. E. Ehler, J. J. Marois and B. A. Jaffee,1995.Intraguild predation among biological-control agents:theory and evidence.Biol. Control5:303–335.

    Google Scholar 

  • Solomon, M. E.,1949.The natural control of animal populations.J. Anim. Ecol.18:1–35.

    Google Scholar 

  • Symondson, W. O. C.,K. D. Sunderland and M. H. Greenstone,2002.Can generalist predators be effective biocontrol agents.Annu. Rev. Entomol.47:561–594.

    PubMed  Google Scholar 

  • Ueno, T.,1999.Host-feeding and acceptance by a parasitic wasp (Hymenoptera:Ichneumonidae)as influenced by egg load and experience in a patch.Evol. Ecol.13:33–44.

    Google Scholar 

  • van Baalen, M.,V. Krivan, P. C. J. van Rijn and M. W. Sabelis,2001.Alternative food, switching predators, and the persistence of predator-prey systems.Am. Nat.157:512–524.

    Google Scholar 

  • Whelan, C. J.,J. S. Brown and G. Maina,2003.Search biases, frequency-dependent predation and species co-existence.Evol. Ecol. Res.5:329–343.

    Google Scholar 

  • Wootton, J. T.,1994.The nature and consequences of indirect effects in ecological communities.Annu. Rev. Ecol. Syst.25:443–466.

    Google Scholar 

  • Wootton, J. T.,2002.Indirect effects in complex ecosystems:recent progress and future challenges.J. Sea Res.48:157–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmon, J., Andow, D. Indirect effects between shared prey: Predictions for. BioControl 49, 605–626 (2004). https://doi.org/10.1007/s10526-004-0420-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-004-0420-5

Navigation