Skip to main content

Advertisement

Log in

Triiodothyronine (T3) enhances lifespan and protects against oxidative stress via activation of Klotho in Caenorhabditis elegans

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Age predisposes individuals to significant diseases, and the biological processes contributing to aging are currently under intense investigation. Klotho is an anti-aging protein with multifaceted roles and is an essential component of the endocrine fibroblast growth factor. In Caenorhabditis elegans (C. elegans), there are two prospective orthologs of α-Klotho, C50F7.10, and E02H9.5, identified. The two orthologs' products are homologous to the highly conserved KL1 domain of human and mouse Klotho protein. Considering the endocrine system's major involvement in an organism's homeostasis and that thyroid disorders increase with advancing age, the molecular mechanisms underlying its impact on different endocrine components during the aging process remain poorly characterized. In this study, we sought to determine the regulatory role of Triiodothyronine (T3) on homologs genes of klotho and its impact on different parameters of aging in the C. elegans model organism. We showed that T3 could increase the mRNA expressions of the klotho homologous genes in C. elegans. Moreover, T3 could also extend a worm lifespan and modulate oxidative stress resistance and aging biomarkers significantly and positively. Further investigations employing different mutant and transgenic strains reveal that these observed effects are mediated through the EGL-17/EGL-15 pathway via Klotho activation along with the involvement of transcription factor DAF-16. In conclusion, these findings have revealed an unexpected link between T3 and Klotho and how this link can modulate the aging process in C. elegans via activation of klotho. This study will help understand the crosstalk and regulations of different endocrine components and their consequences on the aging process in multiple species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

T3:

Triiodothyronine

tBOOH:

Tert-Butyl hydroperoxide

FGFR:

Fibroblast growth factor receptor

µM:

Micro molar

mM:

Milli molar

SEM:

Standard error of mean

FUDR:

5-Fluoro-2′-deoxyuridine

Hours:

Hrs

References

  • Adijiang A, Niwa T (2010) An oral sorbent, AST-120, increases klotho expression and inhibits cell senescence in the kidney of uremic rats. Am J Nephrol 31:160–164

    CAS  PubMed  Google Scholar 

  • Altman DG, Bland JM (1998) Statistics notes: generalisation and extrapolation. BMJ 317:409–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ (2008) Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 7:13–22

    CAS  PubMed  Google Scholar 

  • Barker SL, Pastor J, Carranza D, Quiñones H, Griffith C, Goetz R, Mohammadi M, Ye J, Zhang J, Hu MC, Kuro-o M, Moe OW, Sidhu SS (2015) The emonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 30:223–233

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, Kaether C (2009) Klotho is a substrate for α-, β- and γ-secretase. FEBS Lett 583:3221–3224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    PubMed  Google Scholar 

  • Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode Caenorhabditis elegans. In population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15:279–295

    CAS  PubMed  Google Scholar 

  • Bowers J, Terrien J, Clerget-Froidevaux MS, Gothie JD, Rozing MP, Westendorp RGJ, Van Heemst D, Demeneix BA (2013) Thyroid hormone signaling and homeostasis during aging. Endocr Rev 34:556–589

    CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:77–94

    Google Scholar 

  • Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21:952–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burdine RD, Chen EB, Kwok SF, Stern MJ (1997) Egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proc Natl Acad Sci USA 94:2433–2437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro-O M, Huang CL (2008) Removal of sialic acid involving klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 105:9805–9810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL (2009) Regulation of renal outer medullary potassium channel and renal K(+) excretion by klotho. Mol Pharmacol 76:38–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaker L, Cappola AR, Mooijaart SP, Peeters RP (2018) Clinical aspects of thyroid function during ageing. Lancet Diabetes Endocrinol 6:733–742

    PubMed  Google Scholar 

  • Chang Q (2005) The beta-Glucuronidase Klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    CAS  PubMed  Google Scholar 

  • Château MT, Araiz C, Descamps S, Galas S (2010) Klotho interferes with a novel FGF-signalling pathway and insulin/Igf-like signalling to improve longevity and stress resistance in Caenorhabditis elegans. Aging (Albany NY) 2:567–581

    Google Scholar 

  • Chayen J (1995) Cell biology: A laboratory handbook. J. E. Celis (Ed.). Academic Press: New York, London, Sydney, Tokyo, Toronto. Cell Biochem Funct 13:299–299

    CAS  Google Scholar 

  • Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci 104:19796–19801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ATY, Guo C, Dumas KJ, Ashrafi K, Hu PJ (2013) Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation. Aging Cell 12:932–940

    CAS  PubMed  Google Scholar 

  • Chen CD, Tung TY, Liang J, Zeldich E, Tucker Zhou TB, Turk BE, Abraham CR (2014) Identification of cleavage sites leading to the shed form of the anti-aging protein klotho. Biochemistry 53:5579–5587

    CAS  PubMed  Google Scholar 

  • Chow DK, Glenn CF, Johnston JL, Goldberg IG, Wolkow CA (2006) Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41:252–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clokey GV, Jacobson LA (1986) The autofluorescent lipofuscin granules in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev 35:79–94

    CAS  PubMed  Google Scholar 

  • Croll NA, Smith JM, Zuckerman BM (1977) The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Exp Aging Res 3:175–189

    CAS  PubMed  Google Scholar 

  • Dërmaku-Sopjani M, Sopjani M, Saxena A, Shojaiefard M, Bogatikov E, Alesutan I, Eichenmüller M, Lang F (2011) Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 28:251–258

    PubMed  Google Scholar 

  • Duangjan C, Rangsinth P, Gu X, Wink M, Tencomnao T (2019) Lifespan extending and oxidative stress resistance properties of a leaf extracts from Anacardium occidentale L. in Caenorhabditis elegans. Oxid Med Cell Longev. https://doi.org/10.1155/2019/9012396

    Article  PubMed  PubMed Central  Google Scholar 

  • Essers MAG, Weijzen S, De Vries-Smits AMM, Saarloos I, De Ruiter ND, Bos JL, Burgering BMT (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23:4802–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Essers MAG, De Vries-Smits LMM, Barker N, Polderman PE, Burgering BMT, Korswagen HC (2005) Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science 308:1181–1184

    CAS  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilov LA, Gavrilova NS (2001) The reliability theory of aging and longevity. J Theor Biol 213:527–545

    CAS  PubMed  Google Scholar 

  • Gesing A (2015) The thyroid gland and the process of aging. Thyroid Res 8:A8

    PubMed Central  Google Scholar 

  • Golden TR, Hubbard A, Dando C, Herren MA, Melov S (2008) Age-related behaviors have distinct transcriptional profiles in Caenorhabditis elegans. Aging Cell 7:850–865

    CAS  PubMed  Google Scholar 

  • Gray DA (2005) Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowl Environ. 5:re1

    Google Scholar 

  • Gruber J, Schaffer S, Halliwell B (2008) The mitochondrial free radical theory of ageing–where do we stand? Front Biosci 13:6554–6579

    CAS  PubMed  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    CAS  PubMed  Google Scholar 

  • Hahm JH, Kim S, Diloreto R, Shi C, Lee SJV, Murphy CT, Nam HG (2015) C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat Commun 6:8919

    CAS  PubMed  Google Scholar 

  • Hayes JD, McMahon M (2001) Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174:103–113

    CAS  PubMed  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    CAS  PubMed  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    CAS  PubMed  Google Scholar 

  • Hosono R, Sato Y, Aizawa SI, Mitsui Y (1980) Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp Gerontol 15:285–289

    CAS  PubMed  Google Scholar 

  • Hu MC, Shi M, Zhang J, Quiñones H, Kuro-o M, Moe OW (2010a) Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Razzaque MS, Rosenblatt KP, Baum MG, Kuro-o M, Moe OW (2010b) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu MC, Shi M, Zhang J, Quiñones H, Griffith C, Kuro-o M, Moe OW (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22:124–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci USA 101:8084–8089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J, Chihara Y, Kida I, Ogihara T (2006) Anti-apoptotic and anti-senescence effects of klotho on vascular endothelial cells. Biochem Biophys Res Commun 339:827–832

    CAS  PubMed  Google Scholar 

  • Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima YI (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of klotho protein from cell membrane. FEBS Lett 565:143–147

    CAS  PubMed  Google Scholar 

  • Kahn NW, Rea SL, Moyle S, Kell A, Johnson TE (2008) Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem J 409:205–213

    CAS  PubMed  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Google Scholar 

  • Keith SA, Amrit FRG, Ratnappan R, Ghazi A (2014) The C. elegans healthspan and stress-resistance assay toolkit. Methods 68:476–486

    CAS  PubMed  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: Insights from long-lived mutants. Cell 120:449–460

    CAS  PubMed  Google Scholar 

  • Kenyon C (2011) The first long-lived mutants: Discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc B Biol Sci 366:9–16

    CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    CAS  PubMed  Google Scholar 

  • King GD, Chen CD, Huang MM, Zeldich E, Brazee PL, Schuman ER, Robin M, Cuny GD, Glicksman MA, Abraham CR (2012) Identification of novel small molecules that elevate Klotho expression. Biochem J 441:453–461

    CAS  PubMed  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: Major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    CAS  PubMed  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima Y (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    CAS  PubMed  Google Scholar 

  • Kurosu H (2005) Suppression of aging in mice by the hormone klotho. Science 309:1829–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maltese G, Psefteli PM, Rizzo B, Srivastava S, Gnudi L, Mann GE, Siow RCM (2017) The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med 21:621–627

    CAS  PubMed  Google Scholar 

  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242:626–630

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Oh SW, Tissenbaum HA (2006) Worming pathways to and from DAF-16/FOXO. Exp Gerontol 41:928–934

    CAS  PubMed  Google Scholar 

  • Nabeshima Y (2008) The discovery of α-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis. Cell Mol Life Sci 65:3218–3230

    CAS  PubMed  Google Scholar 

  • Nabeshima Y, Imura H (2008) Alpha-klotho: a regulator that integrates calcium homeostasis. Am J Nephrol 28:455–464

    CAS  PubMed  Google Scholar 

  • Ohyama Y, Kurabayashi M, Masuda H, Nakamura T, Aihara Y, Kaname T, Suga T, Arai M, Aizawa H, Matsumura Y, Kuro-o M, Nabeshima Y, Nagail R (1998) Molecular cloning of rat klotho cDNA markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun 251:920–925

    CAS  PubMed  Google Scholar 

  • Oliveira RP, Abate JP, Dilks K, Landis J, Ashraf J, Murphy CT, Blackwell TK (2009) Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8:524–541

    CAS  PubMed  Google Scholar 

  • Papaevgeniou N, Hoehn A, Grune T, Chondrogianni N (2017) Lipofuscin effects in Caenorhabditis elegans ageing model. Free Radic Biol Med 108:S48

    Google Scholar 

  • Park JH, Lee JH, Park JW, Kim DY, Hahm JH, Nam HG, Bae YS (2017) Downregulation of protein kinase CK2 activity induces agerelated biomarkers in C. elegans. Oncotarget 8:36950–36963

    PubMed  PubMed Central  Google Scholar 

  • Peixoto H, Roxo M, Krstin S, Röhrig T, Richling E, Wink M (2016) An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J Agric Food Chem 64:1283–1290

    CAS  PubMed  Google Scholar 

  • Rangsinth P, Prasansuklab A, Duangjan C, Gu X, Meemon K, Wink M, Tencomnao T (2019) Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complement Altern Med 19:164

    PubMed  PubMed Central  Google Scholar 

  • Rattan SIS (2012) Rationale and methods of discovering hormetins as drugs for healthy ageing. Expert Opin Drug Discov 7:439–448

    CAS  PubMed  Google Scholar 

  • Roubin R, Naert K, Popovici C, Vatcher G, Coulier F, Thierry-Mieg J, Pontarotti P, Birnbaum D, Baillie D, Thierry-Mieg D (1999) let-756, a C. elegans fgf essential for worm development. Oncogene 18:6741–6747

    CAS  PubMed  Google Scholar 

  • Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K (2007) Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Physiol 292:F769–F779

    CAS  Google Scholar 

  • Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O’Brien R (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 558:37–40

    CAS  PubMed  Google Scholar 

  • Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-O M, Nabeshima YI (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424:6–10

    CAS  PubMed  Google Scholar 

  • Silverman GA, Luke CJ, Bhatia SR, Long OS, Vetica AC, Perlmutter DH, Pak SC (2009) Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res 65:10–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal RS, Brunk UT (1989) Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 266:17–26

    CAS  PubMed  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundelin SP, Nilsson SEG (2001) Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 31:217–225

    CAS  PubMed  Google Scholar 

  • Szewczyk NJ, Peterson BK, Barmada SJ, Parkinson LP, Jacobson LA (2007) Opposed growth factor signals control protein degradation in muscles of Caenorhabditis elegans. EMBO J 26:935–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Kuro-O M, Ishikawa F (2000) Aging mechanisms. Proc Natl Acad Sci USA 97:12407–12408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends lifespan and impairs neuroendocrine function. Science 292:107–110

    CAS  PubMed  Google Scholar 

  • Tissenbaum HA (2015) Using C. elegans for aging research. Invertebr Reprod Dev 59(sup1):59–63

    PubMed  Google Scholar 

  • Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima YI (2003) Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of Vitamin D endocrine system. Mol Endocrinol 17:2393–2403

    CAS  PubMed  Google Scholar 

  • Viña J, Borrás C, Miquel J (2007) Theories of ageing. IUBMB Life 59:249–254

    PubMed  Google Scholar 

  • Wickens AP (2001) Ageing and the free radical theory. Respir Physiol 128:379–391

    CAS  PubMed  Google Scholar 

  • Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, Kuro-O M, Karlan B, Kaufman B, Koeffler HP, Rubinek T (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27:7094–7105

    CAS  PubMed  Google Scholar 

  • Xu H, Chen M, Manivannan A, Lois N, Forrester JV (2008) Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-O M (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    CAS  PubMed  Google Scholar 

  • Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S, Ohashi N, Kobori H, Kuro-O M, Yang CW (2011) Angiotensin II blockade upregulates the expression of klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 26:800–813

    CAS  PubMed  Google Scholar 

  • Yoshida T, Fujimori T, Nabeshima YI (2002) Mediation of unusually high concentrations of 1,25-Dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1α-hydroxylase gene. Endocrinology 143:683–689

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biochemistry and Molecular Biology, Pondicherry University, India and Department of Science & Technology (DST), Science and Engineering Research Board (SERB), Government of India, for financial and overall support.

Funding

This work was supported by the Department of Biochemistry and Molecular Biology, Pondicherry University, India. KS is a recipient of funding from SERB (File No EEQ/2016/000343). SKM was supported by a fellowship from the Council of Scientific and Industrial Research (CSIR) (File No 09/559(0128)/2019-EMR-I), Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SKM: Conceptualization, methodology, investigation, formal analysis, writing—original draft, project administration. KS: Supervision, conceptualization, validation, analysis, review and editing, funding acquisition.

Corresponding author

Correspondence to Kitlangki Suchiang.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S.K., Suchiang, K. Triiodothyronine (T3) enhances lifespan and protects against oxidative stress via activation of Klotho in Caenorhabditis elegans. Biogerontology 22, 397–413 (2021). https://doi.org/10.1007/s10522-021-09923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-021-09923-0

Keywords

Navigation