Abstract
Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.



Similar content being viewed by others
References
Asencio C, Rodriguez-Aguilera JC, Ruiz-Ferrer M, Vela J, Navas P (2003) Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. FASEB J 17:1135–1137. doi:10.1096/fj.02-1022fje
Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202
Atkinson A, Khalimonchuk O, Smith P, Sabic H, Eide D, Winge DR (2010) Mzm1 influences a labile pool of mitochondrial zinc important for respiratory function. J Biol Chem 285:19450–19459. doi:10.1074/jbc.M110.109793
Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888
Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. doi:10.1038/nature05354
Baur JA, Chen D, Chini EN et al (2010) Dietary restriction: standing up for sirtuins. Science 329:1012–1013
Bennett CF, Vander Wende H, Simko M et al (2014) Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun 5:3483. doi:10.1038/ncomms4483
Bergamini E, Cavallini G, Donati A, Gori Z (2007) The role of autophagy in aging: its essential part in the anti-aging mechanism of caloric restriction. Ann N Y Acad Sci 1114:69–78
Bigarella CL, Liang R, Ghaffari S (2014) Stem cells and the impact of ROS signaling. Development 141:4206–4218. doi:10.1242/dev.107086
Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545–549. doi:10.1038/nature05904
Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5:265–277
Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951–957. doi:10.1172/JCI64125
Breitenbach M, Laun P, Dickinson JR et al (2012) The role of mitochondria in the aging processes of yeast. Subcell Biochem 57:55–78. doi:10.1007/978-94-007-2561-4_3
Buler M, Aatsinki SM, Izzi V, Uusimaa J, Hakkola J (2014) SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J 28:3225–3237. doi:10.1096/fj.13-245241
Bunoust O, Devin A, Averet N, Camougrand N, Rigoulet M (2005) Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae. J Biol Chem 280:3407–3413. doi:10.1074/jbc.M407746200
Burnett C, Valentini S, Cabreiro F et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485
Cabreiro F, Ackerman D, Doonan R et al (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582. doi:10.1016/j.freeradbiomed.2011.07.020
Carone BR, Fauquier L, Habib N et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096
Cassarino DS, Bennett JP Jr (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Brain Res Rev 29:1–25
Chen D, Pan KZ, Palter JE, Kapahi P (2007) Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6:525–533. doi:10.1111/j.1474-9726.2007.00305.x
Chen Y, Hagopian K, McDonald RB et al (2012) The influence of dietary lipid composition on skeletal muscle mitochondria from mice following 1 month of calorie restriction. J Gerontol A Biol Sci Med Sci 67:1121–1131. doi:10.1093/gerona/gls113
Chen Y, Hagopian K, Bibus D et al (2013) The influence of dietary lipid composition on liver mitochondria from mice following 1 month of calorie restriction. Biosci Rep 33:83–95. doi:10.1042/BSR20120060
Chen Y, Hagopian K, Bibus D et al (2014) The influence of dietary lipid composition on skeletal muscle mitochondria from mice following eight months of calorie restriction. Physiol Res 63:57–71
Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014) Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int 2014:238463. doi:10.1155/2014/238463
Clark SL Jr (1957) Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J Biophys Biochem Cytol 3:349–362
Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(Pt 1):203–210
Copeland JM, Cho J, Lo T Jr et al (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 19:1591–1598. doi:10.1016/j.cub.2009.08.016
Crespo FL, Sobrado VR, Gomez L, Cervera AM, McCreath KJ (2010) Mitochondrial reactive oxygen species mediate cardiomyocyte formation from embryonic stem cells in high glucose. Stem Cells 28:1132–1142
Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140
Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56. doi:10.1371/journal.pgen.0030056
Daniel M, Tollefsbol TO (2015) Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 218:59–70. doi:10.1242/jeb.107110
De Cabo R, Cabello R, Rios M, Lopez-Lluch G, Ingram DK, Lane MA, Navas P (2004) Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp Gerontol 39:297–304
De Meyer GR, De Keulenaer GW, Martinet W (2010) Role of autophagy in heart failure associated with aging. Heart Fail Rev 15:423–430
de Vries S, Marres CA (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim Biophys Acta 895:205–239
Di Bartolomeo S, Nazio F, Cecconi F (2010) The role of autophagy during development in higher eukaryotes. Traffic 11:1280–1289
Di_Lisa F, Ziegler M (2001) Pathophysiological relevance of mitochondria in NAD(+) metabolism. FEBS Lett 492:4–8
Dillin A, Hsu AL, Arantes-Oliveira N et al (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401. doi:10.1126/science.1077780
Du J, Zhou Y, Su X et al (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809. doi:10.1126/science.1207861
Durieux J, Dillin A (2007) Mitochondria and aging: dilution is the solution. Cell Metab 6:427–429. doi:10.1016/j.cmet.2007.11.008
Easlon E, Tsang F, Skinner C, Wang C, Lin SJ (2008) The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev 22:931–944. doi:10.1101/gad.1648308
Elchuri S, Oberley TD, Qi W et al (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24:367–380. doi:10.1038/sj.onc.1208207
Elmore SP, Qian T, Grissom SF, Lemasters JJ (2001) The mitochondrial permeability transition initiates autophagy in rat hepatocytes. Faseb J 15:2286–2287
Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81
Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123:655–667
Feige JN, Lagouge M, Auwerx J (2008) Dietary manipulation of mouse metabolism. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb29b05s84 Chapter 29:Unit 29B 25
Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18:1783–1792. doi:10.1093/emboj/18.7.1783
Fernandez-Ayala DJ, Sanz A, Vartiainen S et al (2009) Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation. Cell Metab 9:449–460
Fernandez-Ayala DJM, Chen SJ, Kemppainen E, O’Dell KMC, Jacobs HT (2010) Gene expression in a Drosophila model of mitochondrial disease. PLoS ONE 5:e8549
Fernandez-Ayala DJ, Jimenez-Gancedo S, Guerra I, Navas P (2014) Invertebrate models for coenzyme q10 deficiency. Mol Syndromol 5:170–179. doi:10.1159/000362751
Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161(1):106–118. doi:10.1016/j.cell.2015.02.020
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–1080. doi:10.1101/gad.1399706
Freudenthal G (1995) Aristotle´s theory of material substance. Heat and phneuma, Form and soul. Oxford University Press, Oxford
Friis RM, Glaves JP, Huan T, Li L, Sykes BD, Schultz MC (2014) Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. Cell Rep 7:565–574. doi:10.1016/j.celrep.2014.03.029
Gal J, Bang Y, Choi HJ (2012) SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochem Int 61:992–1000. doi:10.1016/j.neuint.2012.07.010
Gaziev AI, Abdullaev S, Podlutsky A (2014) Mitochondrial function and mitochondrial DNA maintenance with advancing age. Biogerontology 15:417–438. doi:10.1007/s10522-014-9515-2
Gertler AA, Cohen HY (2013) SIRT6, a protein with many faces. Biogerontology 14:629–639. doi:10.1007/s10522-013-9478-8
Gomes LC, Scorrano L (2008) High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta 1777:860–866
Gonzalez-Freire M, Cabo R, Bernier M, Sollott SJ, Fabbri E, Navas P, Ferrucci L (2015) Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glv070
Gouspillou G, Sgarioto N, Norris B et al (2014) The relationship between muscle fiber type-specific PGC-1alpha content and mitochondrial content varies between rodent models and humans. PLoS ONE 9:e103044. doi:10.1371/journal.pone.0103044
Guarente L (2011) Sirtuins, aging, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90. doi:10.1101/sqb.2011.76.010629
Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085. doi:10.1101/gad.227439.113
Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482. doi:10.1016/j.cell.2005.01.029
Hamacher-Brady A, Brady NR, Logue SE et al (2007) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14:146–157
Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555. doi:10.1101/gad.1308205
Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735. doi:10.1210/er.2006-0037
Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128. doi:10.1371/journal.pgen.0010017
Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110. doi:10.1111/j.1474-9726.2006.00267.x
Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24. doi:10.1371/journal.pgen.0040024
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300
Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF (2007) Autophagy regulates ageing in C. elegans. Autophagy 3:93–95
Hebert SL, Lanza IR, Nair KS (2010) Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev 131:451–462. doi:10.1016/j.mad.2010.03.007
Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024. doi:10.1172/JCI45693
Heidler T, Hartwig K, Daniel H, Wenzel U (2010) Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11:183–195. doi:10.1007/s10522-009-9239-x
Herranz D, Iglesias G, Munoz-Martin M, Serrano M (2010) Limited role of Sirt1 in cancer protection by dietary restriction. Cell Cycle 10:2215–2217
Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954
Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145. doi:10.1126/science.1083701
Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800. doi:10.1038/35001622
Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022. doi:10.1073/pnas.0705070104
Jazwinski SM (2004) Yeast replicative life span—the mitochondrial connection. FEMS Yeast Res 5:119–125. doi:10.1016/j.femsyr.2004.04.005
Ji AR, Ku SY, Cho MS et al (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med 42:175–186
Jimenez-Hidalgo M, Santos-Ocana C, Padilla S et al (2009) NQR1 controls lifespan by regulating the promotion of respiratory metabolism in yeast. Aging Cell 8:140–151
Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464:513–519
Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580
Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:E296
Kaeberlein M, Hu D, Kerr EO et al (2005a) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1:e69
Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2005b) Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126:491–504
Kaeberlein M, Powers RW 3rd, Steffen KK et al (2005c) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196. doi:10.1126/science.1115535
Kanki T, Klionsky DJ (2008) Mitophagy in yeast occurs through a selective mechanism. J Biol Chem 283:32386–32393
Kanki T, Klionsky DJ (2009) Atg32 is a tag for mitochondria degradation in yeast. Autophagy 5:1201–1202
Kanki T, Klionsky DJ (2010) The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol 75:795–800. doi:10.1111/j.1365-2958.2009.07035.x
Kanki T, Wang K, Klionsky DJ (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6:278–280
Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890. doi:10.1016/j.cub.2004.03.059
Katajisto P, Dohla J, Chaffer CL et al (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343. doi:10.1126/science.1260384
Kendrick AA, Choudhury M, Rahman SM et al (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 433:505–514. doi:10.1042/BJ20100791
Kenyon C (1997) Aging in C. elegans, vol 33, 2nd edn. Cold Spring Harbor Laboratory Press, New York
Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460. doi:10.1016/j.cell.2005.02.002
Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512. doi:10.1038/nature08980
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464. doi:10.1038/366461a0
Khraiwesh H, Lopez-Dominguez JA, Lopez-Lluch G et al (2013) Alterations of ultrastructural and fission/fusion markers in hepatocyte mitochondria from mice following calorie restriction with different dietary fats. J Gerontol A Biol Sci Med Sci 68:1023–1034. doi:10.1093/gerona/glt006
Khraiwesh H, Lopez-Dominguez JA, Fernandez del Rio L et al (2014) Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats. Exp Gerontol 56:77–88. doi:10.1016/j.exger.2014.03.023
Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253
King R (2001) Aristotle on life and death. Duckworth, London
Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279:39068–39074
Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937
Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830
Ku HH, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627
Kubli DA, Quinsay MN, Huang C, Lee Y, Gustafsson AB (2008) Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 295:H2025–H2031
Kume S, Uzu T, Horiike K et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055. doi:10.1172/JCI41376
Kurz T, Terman A, Brunk UT (2007) Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462:220–230
Labunskyy VM, Gerashchenko MV, Delaney JR, Kaya A, Kennedy BK, Kaeberlein M, Gladyshev VN (2014) Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires induction of the unfolded protein response. PLoS Genet 10:e1004019. doi:10.1371/journal.pgen.1004019
Lagouge M, Larsson NG (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273:529–543. doi:10.1111/joim.12055
Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096
Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706. doi:10.1146/annurev-biochem-060408-093701
Larsson C, Pahlman IL, Ansell R, Rigoulet M, Adler L, Gustafsson L (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14:347–357. doi:10.1002/(SICI)1097-0061(19980315)14
Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48. doi:10.1038/ng1056
Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5
Levin BE (2000) The obesity epidemic: metabolic imprinting on genetically susceptible neural circuits. Obes Res 8:342–347
Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128
Lin SS, Manchester JK, Gordon JI (2001) Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem 276:36000–36007
Lin SJ, Kaeberlein M, Andalis AA et al (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348
Lombard DB, Schwer B, Alt FW, Mostoslavsky R (2008) SIRT6 in DNA repair, metabolism and ageing. J Intern Med 263:128–141. doi:10.1111/j.1365-2796.2007.01902.x
Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280
Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131–142
Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31. doi:10.1016/j.cmet.2012.06.002
Lopez-Dominguez JA, Khraiwesh H, Gonzalez-Reyes JA et al (2014) Dietary fat and aging modulate apoptotic signaling in liver of calorie-restricted mice. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu045
Lopez-Lluch G, Rios M, Lane MA, Navas P, de Cabo R (2005) Mouse liver plasma membrane redox system activity is altered by aging and modulated by calorie restriction. Age 27:153–160. doi:10.1007/s11357-005-2726-3
Lopez-Lluch G, Hunt N, Jones B et al (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773
Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819
Lopez-Lluch G, Rodriguez-Aguilera JC, Santos-Ocana C, Navas P (2010) Is coenzyme Q a key factor in aging? Mech Ageing Dev 131:225–235. doi:10.1016/j.mad.2010.02.003
Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846. doi:10.1038/ncb0910-842
Mao Z, Hine C, Tian X et al (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–1446. doi:10.1126/science.1202723
Mathias RA, Greco TM, Oberstein A et al (2014) Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159:1615–1625. doi:10.1016/j.cell.2014.11.046
Mattagajasingh I, Kim CS, Naqvi A et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104:14855–14860. doi:10.1073/pnas.0704329104
Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391. doi:10.1126/science.1087782
Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging 5:144–150
Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752
Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A (2014) Genetics and epigenetics of aging and longevity. Cell Cycle 13:1063–1077. doi:10.4161/cc.28433
Mostoslavsky R, Chua KF, Lombard DB et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329. doi:10.1016/j.cell.2005.11.044
Munkacsy E, Rea SL (2014) The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 56:221–233. doi:10.1016/j.exger.2014.03.016
Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298. doi:10.1371/journal.pbio.1000298
Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460. doi:10.1074/jbc.M501485200
Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51. doi:10.1038/embor.2009.256
Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656
Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242
Oka S, Hirai J, Yasukawa T, Nakahara Y, Inoue YH (2015) A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults. Biogerontology. doi:10.1007/s10522-015-9570-3
Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5:1203–1205
Olgun A (2009) Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging. Biogerontology 10:531–534
Overkamp KM, Bakker BM, Kotter P, van Tuijl A, de Vries S, van Dijken JP, Pronk JT (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830
Overkamp KM, Bakker BM, Kotter P, Luttik MA, Van Dijken JP, Pronk JT (2002) Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol 68:2814–2821
Owusu-Ansah E, Banerjee U (2009) Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461:537–541
Palacios OM, Carmona JJ, Michan S et al (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 1:771–783
Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1:131–145
Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447:550–555. doi:10.1038/nature05837
Papucci L, Schiavone N, Witort E et al (2003) Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 278:28220–28228
Pearson KJ, Baur JA, Lewis KN et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168. doi:10.1016/j.cmet.2008.06.011
Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA 86:2761–2765
Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127:733–740. doi:10.1016/j.mad.2006.05.004
Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613–1621
Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667. doi:10.1016/j.cmet.2010.11.015
Raha S, McEachern GE, Myint AT, Robinson BH (2000) Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic Biol Med 29:170–180
Raimundo N (2014) Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 20:282–292. doi:10.1016/j.molmed.2014.01.005
Raizen DM, Lee RY, Avery L (1995) Interacting genes required for pharyngeal excitation by motor neuron MC in Caenorhabditis elegans. Genetics 141:1365–1382
Rajawat YS, Hilioti Z, Bossis I (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8:199–213
Rea SL (2005) Metabolism in the Caenorhabditis elegans Mit mutants. Exp Gerontol 40:841–849. doi:10.1016/j.exger.2005.06.015
Rea SL, Ventura N, Johnson TE (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol 5:e259. doi:10.1371/journal.pbio.0050259
Ren Y, Chen S, Ma M, Yao X, Sun D, Li B, Lu J (2015) The activation of protein homeostasis protective mechanisms perhaps is not responsible for lifespan extension caused by deficiencies of mitochondrial proteins in C. elegans. Exp Gerontol 65:53–57. doi:10.1016/j.exger.2015.03.005
Rodriguez-Aguilera JC, Asencio C, Ruiz-Ferrer M, Vela J, Navas P (2003) Caenorhabditis elegans ubiquinone biosynthesis genes. BioFactors 18:237–244
Rodriguez-Bies E, Santa-Cruz Calvo S, Fontan-Lozano A et al (2010) Muscle physiology changes induced by every other day feeding and endurance exercise in mice: effects on physical performance. PLoS ONE 5:e13900. doi:10.1371/journal.pone.0013900
Rodriguez-Bies E, Navas P, Lopez-Lluch G (2015) Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle. J Gerontol A Biol Sci Med Sci 70:33–43. doi:10.1093/gerona/glu002
Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2:39–46
Rodriguez-Hernandez A, Cordero MD, Salviati L et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5:19–32
Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003
Sahin E, Colla S, Liesa M et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365. doi:10.1038/nature09787
Salviati L, Trevisson E, Rodriguez Hernandez MA et al (2012) Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency. J Med Genet 49:187–191. doi:10.1136/jmedgenet-2011-100394
Samant SA, Zhang HJ, Hong Z et al (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34:807–819. doi:10.1128/MCB.01483-13
Santos-Ocaña C, Córdoba F, Crane FL, Clarke CF, Navas P (1998a) Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae. J Biol Chem 273(14):8099–8105
Santos-Ocaña C, Villalba JM, Córdoba F, Padilla S, Crane FL, Clarke CF, Navas P (1998b) Genetic evidence for coenzyme Q requirement in plasma membrane electron transport. J Bioenerg Biomembr 30(5):465–475
Sanz A, Stefanatos RK (2008) The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 1:10–21
Sanz A, Fernandez-Ayala DJ, Stefanatos RK, Jacobs HT (2010a) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2:200–223
Sanz A, Soikkeli M, Portero-Otin M et al (2010b) Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction. Proc Natl Acad Sci USA 107:9105–9110. doi:10.1073/pnas.0911539107
Schenk S, McCurdy CE, Philp A et al (2011) Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest 121:4281–4288. doi:10.1172/JCI58554
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760
Schiavi A, Ventura N (2014) The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol 56:147–153. doi:10.1016/j.exger.2014.02.015
Schroeder EA, Raimundo N, Shadel GS (2013) Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab 17:954–964. doi:10.1016/j.cmet.2013.04.003
Schulz AM, Haynes CM (2015) UPR-mediated cytoprotection and organismal aging. Biochim Biophys Acta. doi:10.1016/j.bbabio.2015.03.008
Scialo F, Mallikarjun V, Stefanatos R, Sanz A (2013) Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 19:1953–1969. doi:10.1089/ars.2012.4900
Sesti F, Liu S, Cai SQ (2010) Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration? Trends Cell Biol 20:45–51. doi:10.1016/j.tcb.2009.09.008
Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623. doi:10.1073/pnas.0501559102
Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042
Slater-Jefferies JL, Lillycrop KA, Townsend PA, Torrens C, Hoile SP, Hanson MA, Burdge GC (2010) Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-a in the heart of the offspring. J Develop Ori Health Dis 2:250–255. doi:10.1017/S2040174410000425
Small WC, McAlister-Henn L (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J Bacteriol 180:4051–4055
Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63
Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33:575–586
Sullivan EL, Grove KL (2010) Metabolic imprinting in obesity. Forum Nutr 63:186–194. doi:10.1159/000264406
Suomalainen A (2015) Stem cells: asymmetric rejuvenation. Nature 521:296–298. doi:10.1038/521296a
Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314
Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12:503–535
Thukral SK, Eisen A, Young ET (1991) Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol Cell Biol 11:1566–1577
Tischler ME, Hecht P, Williamson JR (1977) Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption. Arch Biochem Biophys 181:278–293
Toivonen JM, O’Dell KM, Petit N et al (2001) Technical knockout, a Drosophila model of mitochondrial deafness. Genetics 159:241–254
Toth ML, Sigmond T, Borsos E et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330–338
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF (2007) BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 27:6229–6242
Trevisson E, DiMauro S, Navas P, Salviati L (2011) Coenzyme Q deficiency in muscle. Curr Opin Neurol 24:449–456. doi:10.1097/WCO.0b013e32834ab528
Tseng AH, Shieh SS, Wang DL (2013) SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med 63:222–234. doi:10.1016/j.freeradbiomed.2013.05.002
Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446
Vakhrusheva O, Smolka C, Gajawada P et al (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710. doi:10.1161/CIRCRESAHA.107.164558
Van Raamsdonk JM, Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5:e1000361. doi:10.1371/journal.pgen.1000361
Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci USA 109:5785–5790. doi:10.1073/pnas.1116158109
Van Raamsdonk JM, Meng Y, Camp D, Yang W, Jia X, Benard C, Hekimi S (2010) Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage. Genetics 185:559–571. doi:10.1534/genetics.110.115378
Ventura N, Rea SL, Testi R (2006) Long-lived C. elegans mitochondrial mutants as a model for human mitochondrial-associated diseases. Exp Gerontol 41:974–991. doi:10.1016/j.exger.2006.06.060
Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407
Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127:48–56. doi:10.1016/j.mad.2005.09.005
Wang F, Nguyen M, Qin FX, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514. doi:10.1111/j.1474-9726.2007.00304.x
Wawryn J, Krzepilko A, Myszka A, Bilinski T (1999) Deficiency in superoxide dismutases shortens life span of yeast cells. Acta Biochim Pol 46:249–253
Weinberger M, Mesquita A, Caroll T et al (2010) Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging 2:709–726
Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401
Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109
Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556. doi:10.1371/journal.pbio.1000556
Yang W, Li J, Hekimi S (2007) A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177:2063–2074. doi:10.1534/genetics.107.080788
Yee C, Yang W, Hekimi S (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909. doi:10.1016/j.cell.2014.02.055
Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552
Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14. doi:10.1038/nrm3028
Zid BM, Rogers AN, Katewa SD et al (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160. doi:10.1016/j.cell.2009.07.034
Ziegler DV, Wiley CD, Velarde MC (2015) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14:1–7. doi:10.1111/acel.12287
Acknowledgements
The research group is financed by the Andalusian Government as the BIO177 group through FEDER funds (European Commission). Research has been financed by the Spanish Government Grant DEP2012-39985 (Spanish Ministry of Economy and Competitiveness). Authors are also members of the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto Carlos III.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
López-Lluch, G., Santos-Ocaña, C., Sánchez-Alcázar, J.A. et al. Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology 16, 599–620 (2015). https://doi.org/10.1007/s10522-015-9585-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10522-015-9585-9