Skip to main content
Log in

Rupture parameter sensitivity of low frequency ground motion response spectra using synthetic scenarios in North Chile

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This research performs a sensitivity analysis of response spectrum values for various physical earthquake parameters, which are used to generate synthetic seismograms consistent with the expected seismicity in north Chile. Sensitivity analyses are based on the earthquake scenario and slip distribution model of the 2014, \(M_w\) 8.1 Pisagua earthquake, and seven other physically plausible interplate events for north Chile. A finite-fault rupture model, and slip distribution of the Pisagua earthquake, were obtained using inversion of InSAR and GPS data. Three other rupture models based on previous studies of interplate locking for north Chile and capable of generating \(M_w\) 8.3–8.6 earthquakes with an estimated maximum slip of 9.2 m, were incorporated in the analyses. Also, four additional scenarios with moment magnitudes in the range \(M_w\) 8.6–8.9 were generated by concatenating these physical scenarios into larger rupture areas within the north segment. Using these scenarios, synthetic ground motions were built at four observation sites: Pisagua, Iquique, Tocopilla, and Calama. Response sensitivity was studied for three key rupture parameters: mean rupture velocity, slip rise-time, and rupture directivity. Responses selected were peak ground displacement (PGD), spectral pseudo-velocities, \(S_v\), and spectral displacements, \(S_d\). First and second order variations of PGD, \(S_v\), and \(S_d\) relative to the source parameters were computed and used together with a Taylor series expansion to propagate uncertainty into the responses as a function of \(v_r\) and rise-time \(t_r\). To study the effect of rupture directivity, three different foci locations were considered for each scenario: north, south, and at the centroid of the slip model. Response PGD values show no clear trends with rupture velocity, \(v_r\); however, the variability increases as the system period increases. The effect of the slip rise-time is significant, and as \(t_r\) increases, the spectral responses tend to decrease, suggesting that shorter slip rise-times lead to higher seismic demands in long period structures. The results obtained for the directivity analysis suggest that two factors control the expected waveforms and spectral responses: first, the direction of the rupture relative to the location of each site, and the hypocentral distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abell JA, de la Llera JC, Wicks CW (2011) Enhancement of long period components of recorded and synthetic ground motions using InSAR. Soil Dyn Earthq Eng 31(5–6):817–829. https://doi.org/10.1016/j.soildyn.2011.01.005

    Article  Google Scholar 

  • Aguirre P, Fortuño C, Wicks C, de la Llera JC, González G, Cembrano J (2017) Slip model and Synthetic Broad-band Strong Motions for the 2015 \(M_W\) 8.3 Illapel (Chile) Earthquake (Manuscript in preparation)

  • Aki K, Richards PG (2009) Quantitative seismology, 2nd edn. University Science Books, Mill Valley

    Google Scholar 

  • Ang AHS, Tang WH (2007) Probability concepts in engineering: emphasis on applications to civil and environmental engineering, vol 1, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Ayre RS (2002) Transient response to step and pulse functions. In: Harris CM, Piersol AG (eds) Harris’ shock and vibration handbook, chap 8, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Béjar-Pizarro M, Socquet A, Armijo R, Carrizo D, Genrich J, Simons M (2013) Andean structural control on interseismic coupling in the North Chile subduction zone. Nat Geosci 6(6):462–467. https://doi.org/10.1038/ngeo1802

    Article  Google Scholar 

  • Boore DM, Stephens CD, Joyner WB (2002) Comments on baseline correction of digital strong-motion data: examples from the 1999 Hector Mine, California, Earthquake. Bull Seismol Soc Am 92(4):1543–1560

    Article  Google Scholar 

  • Chopra AK (2013) Dynamics of structures, theory and applications to earthquake engineering, vol 1, 4 edn. Pearson

  • Christensen D, Ruff L (1986) Rupture process of the March 3, 1985 Chilean earthquake. Geophys Res Lett 13(8):721–724

    Article  Google Scholar 

  • Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the Northern Chile and Southern Peru seismic gaps. Nat Hazards 4:23–44

    Article  Google Scholar 

  • Cortés-Aranda J, González G, Rémy D, Martinod J (2015) Normal upper plate fault reactivation in northern Chile and the subduction earthquake cycle: from geological observations and static Coulomb Failure Stress (CFS) change. Tectonophysics 639:118–131

    Article  Google Scholar 

  • Delouis B, Monfret T, Dorbath L, Pardo M, Rivera L, Comte D, Haessler H (1997) The Mw = 8.0 Antofagasta (Northern Chile) Earthquake of 30, (July 1995) A Precursor to the End of the Large 1877 Gap. Bull Seismol Soc Am 87(2):427–445

    Google Scholar 

  • Delouis B, Pardo M, Legrand D, Monfret T (2009) The Mw 7.7 Tocopilla earthquake of 14, (November 2007) at the Southern edge of the Northern Chile seismic gap: rupture in the deep part of the coupled plate interface. Bull Seismol Soc Am 99(1):87–94. https://doi.org/10.1785/0120080192

    Article  Google Scholar 

  • Farías M, Vargas G, Tassara A, Carretier S, Baize S, Melnick D, Bataille K (2010) Land-level changes produced by the Mw 8.8 2010 Chilean earthquake. Science (New York, NY) 329(5994):916. https://doi.org/10.1126/science.1192094

    Article  Google Scholar 

  • Fortuño C, de la Llera JC, Wicks CW, Ja A (2014) Synthetic hybrid broadband seismograms based on InSAR coseismic displacements. Bull Seismol Soc Am 104(6):2735–2754. https://doi.org/10.1785/0120130293

    Article  Google Scholar 

  • Fortuño C, de la Llera J, González G, González J, Aguirre P (2017) Sensitivity of synthetic seismograms for different seismic scenarios in north Chile. In: 16th World Conference on Earthquake Engineering, Santiago, Chile

  • Frankel A (2013) Rupture history of the 2011 M 9 Tohoku Japan earthquake determined from strong-motion and high-rate GPS recordings: subevents radiating energy in different frequency bands. Bull Seismol Soc Am 103(2B):1290–1306. https://doi.org/10.1785/0120120148

    Article  Google Scholar 

  • Guatteri M, Mai PM, Beroza GC, Boatwright J (2003) Strong ground-motion prediction from stochastic-dynamic source models. Bull Seismol Soc Am 93(1):301–313

    Article  Google Scholar 

  • Guatteri M, Mai PM, Beroza GC (2004) A pseudo-dynamic approximation to dynamic rupture models for strong ground motion prediction. Bull Seismol Soc Am 94(6):2051–2063

    Article  Google Scholar 

  • Hartzell S, Frankel A, Liu P, Zeng Y, Rahman S (2011) Model and parametric uncertainty in source-based kinematic models of earthquake ground motion. Bull Seismol Soc Am 101(5):2431–2452. https://doi.org/10.1785/0120110028

    Article  Google Scholar 

  • Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: a three-dimensional model of global subduction zone geometries. J Geophys Res. https://doi.org/10.1029/2011JB008524

    Article  Google Scholar 

  • Hayes GP, Herman MW, Barnhart WD, Furlong KP, Riquelme S, Benz HM, Bergman E, Barrientos S, Earle PS, Samsonov S (2014) Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature 512:295–298. https://doi.org/10.1038/nature13677

    Article  Google Scholar 

  • Hutchings L, Viegas G (2012) Application of empirical green’s functions in earthquake source, wave propagation and strong ground motion studies. In: D’Amico S (ed) Earthquake research and analysis—new frontiers in seismology. Intech, pp 87–140

  • Imperatori W, Martin P (2012) Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations: an application to the Messina Straits (Italy). Geophys J Int 188(3):1103–1116. https://doi.org/10.1111/j.1365-246X.2011.05296.x

    Article  Google Scholar 

  • Lapusta N, Dunham E, Avouac JP, Denolle M, van Dinther Y, Faulkner D, Fialko Y, Kitajima H, Lambert V, Larochelle S (2019) Modeling earthquake source processes: from tectonics to dynamic rupture. Report to the National Science Foundation

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of Earth’s crust. Geophys Res Abstr 15

  • Lay T, Ammon CJ, Kanamori H, Koper KD, Sufri O, Hutko AR (2010) Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys Res Lett 37(13):1–5. https://doi.org/10.1016/j.soildyn.2011.01.0050

    Article  Google Scholar 

  • Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR, Ye L, Yue H, Rushing TM (2012) Depth-varying rupture properties of subduction zone megathrust faults. J Geophys Res. https://doi.org/10.1029/2011JB009133

    Article  Google Scholar 

  • Lay T, Yue H, Brodsky EE, An C (2014) The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys Res Lett 41:1–8. https://doi.org/10.1016/j.soildyn.2011.01.0051

    Article  Google Scholar 

  • Li S, Moreno M, Bedford J, Rosenau M, Oncken O (2015) Revisiting viscoelastic effects on interseismic deformation and locking degree: a case study of the Peru-North Chile subduction zone. J Geophys Res Solid Earth 120(6):4522–4538. https://doi.org/10.1002/2015JB011903

    Article  Google Scholar 

  • Liu P, Archuleta RJ, Hartzell SH (2006) Prediction of broadband ground-motion time histories: hybrid low/high- frequency method with correlated random source parameters. Bull Seismol Soc Am 96(6):2118–2130. https://doi.org/10.1785/0120060036

    Article  Google Scholar 

  • Melgar D, LeVeque RJ, Dreger DS, Allen RM (2016) Kinematic rupture scenarios and synthetic displacement data: an example application to the Cascadia subduction zone. J Geophys Res Solid Earth 121:6658–6674. https://doi.org/10.1002/2016JB013314.Received

    Article  Google Scholar 

  • Metois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas-Bermejo MC, Ortega I (2013) Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194(3):1283–1294. https://doi.org/10.1016/j.soildyn.2011.01.0055

    Article  Google Scholar 

  • Motagh M, Schurr B, Anderssohn J, Cailleau B, Walter TR, Wang R, Villotte JP (2010) Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results from InSAR and aftershocks. Tectonophysics 490(1–2):60–68. https://doi.org/10.1016/j.tecto.2010.04.033

    Article  Google Scholar 

  • Myers SC, Beck S, Zandt G, Wallace T (1998) Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. J Geophys Res 103(B9):21233–21252. https://doi.org/10.1016/j.soildyn.2011.01.0057

    Article  Google Scholar 

  • Pavic R, Koller MG, Bard PY, Lacave-Lachet C (2000) Ground motion prediction with the empirical Green’s function technique: an assessment of uncertainties and confidence level. J Seismolog 4:59–77

    Article  Google Scholar 

  • Pritchard ME, Ji C, Simons M (2006) Distribution of slip from 11 \(\text{ Mw } > 6\) earthquakes in the northern Chile subduction zone. J Geophys Res. https://doi.org/10.1029/2005JB004013

    Article  Google Scholar 

  • Schurr B, Asch G, Hainzl S, Bedford J, Hoechner A, Palo M, Wang R, Moreno M, Bartsch M, Zhang Y, Oncken O, Tilmann F, Dahm T, Victor P, Barrientos S, Vilotte JP (2014) Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512:299–302. https://doi.org/10.1016/j.soildyn.2011.01.0058

    Article  Google Scholar 

  • Shrivastava MN, González-Carrasco J, Fuentes C, González G, Salazar P, Yáñez GA, de la Llera JC (2015) Deterministic seismic hazard assessment for the southern Peru and northern Chile segment of the Andean subduction zone. In: AGU Fall Meeting, San Francisco, EEUU. https://agu.confex.com/agu/fm15/webprogram/Paper78089.html

  • Somala SN, Ampuero JP, Lapusta N (2014) Resolution of rise time in earthquake slip inversions : effect of station spacing and rupture velocity. Bull Seismol Soc Am 104(6):2717–2734. https://doi.org/10.1785/0120130185

    Article  Google Scholar 

  • Stachnik JC, Abers Ga, Christensen DH (2004) Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J Geophys Res Solid Earth. https://doi.org/10.1029/2004JB003018

    Article  Google Scholar 

  • Stewart J (2012) Multivariable calculus, 7th edn. Brooks/Cole

    Google Scholar 

  • Stewart JP, Sj C, Bray JD, Graves RW, Somerville PG, Abrahamson NA (2002) Ground motion evaluation procedures for performance-based design. Soil Dyn Earthq Eng 22(9–12):765–772

    Article  Google Scholar 

  • Tinti E, Fukuyama E, Piatanesi A, Cocco M (2005) A kinematic source-time function compatible with earthquake dynamics. Bull Seismol Soc Am 95(4):1211–1223. https://doi.org/10.1785/0120040177

    Article  Google Scholar 

  • Yagi Y, Okuwaki R, Enescu B, Hirano S, Yamagami Y, Endo S, Komoro T (2014) Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activity. Geophys Res Lett 41:4201–4206. http://www.nature.com/doifinder/10.1038/ngeo18022

    Article  Google Scholar 

  • Ye L, Lay T, Kanamori H, Koper KD (2015) Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile Mw 8.3 earthquake. Pure Appl Geophys. https://doi.org/10.1007/s00024-015-1202-y

    Article  Google Scholar 

  • Zhu L, Rivera LA (2002) A note on the dynamic and static displacements from a point source in multilayered media. Geophys J Int 148:619–627

    Article  Google Scholar 

Download references

Acknowledgements

This research has been sponsored by grants National Research Center for Integrated Disaster Risk Management (CIGIDEN), ANID/FONDAP #15110017 and Fondecyt Grants 1141187 and 1170836. The authors are very grateful for this support. Juan González acknowledges funding from the postdoctoral project ANID/FONDECYT/3200772. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Fortuño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortuño, C., de la Llera, J.C., González, G. et al. Rupture parameter sensitivity of low frequency ground motion response spectra using synthetic scenarios in North Chile. Bull Earthquake Eng 19, 4833–4864 (2021). https://doi.org/10.1007/s10518-021-01113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-021-01113-0

Keywords

Navigation