Skip to main content
Log in

Influence of ground-motion correlation on probabilistic assessments of seismic hazard and loss: sensitivity analysis

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Recent studies have shown that the proper treatment of ground-motion variability and, particularly, the correlation of ground motion are essential for the estimation of the seismic hazard, damage and loss for distributed portfolios. In this work we compared the effects of variations in the between-earthquake correlation and in the site-to-site correlation on probabilistic estimations of seismic damage and loss for the extended objects (hypothetical portfolio) and critical elements (e.g. bridges) of a network. Taiwan Island has been chosen as a test case for this study because of relatively high seismicity and previous experience in earthquake hazard modelling. The hazard and loss estimations were performed using Monte Carlo approach on the basis of stochastic catalogues and random ground-motion fields. We showed that the influence of correlation on parameters of seismic hazard, characteristics of loss distribution and the probability of damage depend, on one hand, on level of hazard and probability level of interest (return period) and, on the other hand, the relative influence of each type of correlation is not equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson NA, Youngs RR (1992) A stable algorithm for regression analysis using the random effects model. Bull Seism Soc Am 82: 505–510

    Google Scholar 

  • Abrahamson N, Atkinson G, Boore D, Bozorgnia Y, Campbell K, Chiou B, Idriss IM, Silva W, Youngs R (2008) Comparison of the NGA ground-motion relations. Earthq Spectra 24(1): 45–66. doi:10.1193/1.2924363

    Article  Google Scholar 

  • Bal IE, Bommer JJ, Stafford PJ, Crowley H, Pinho R (2010) The influence of geographical resolution of urban exposure data in an earthquake loss model for Istanbul. Earthq Spectra 26(3): 619–634. doi:10.1193/1.3459127

    Article  Google Scholar 

  • Bazzurro P, Luco N (2005) Accounting for uncertainty and correlation in earthquake loss estimation. In: Proceedings of 9’ International Conference on Safety and Reliability of Engineering Systems and Structures (ICOSSAR) 2005, Rome, Italy

  • Bommer JJ, Crowley H (2006) The influence of ground-motion variability in earthquake loss modelling. Bull Earthquake Eng 4(3): 231–248. doi:10.1007/s10518-006-9008-z

    Article  Google Scholar 

  • Boore DM, Joyner WB, Fumal TE (1997) Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismol Res Lett 68: 128–153

    Google Scholar 

  • Boore DM, Gibbs JF, Joyner WB, Tinsley JC, Ponti DJ (2003) Estimated ground motion from the 1994 Northridge, California, Earthquake at the site of the Interstate 10 and La Cienega Boulevard Bridge collapse, West Los Angeles, California. Bull Seism Soc Am 93: 2737–2751. doi:10.1785/0120020197

    Article  Google Scholar 

  • Bradley B (2010) Site-specific and spatially distributed ground-motion prediction of acceleration spectrum intensity. Bull Seism Soc Am 100: 792–801. doi:10.1785/0120090157

    Article  Google Scholar 

  • Brillinger DR, Preisler HK (1984) An exploratory analysis of the Joyner-Boore attenuation data. Bull Seism Soc Am 74: 1441–1450

    Google Scholar 

  • Brillinger DR, Preisler HK (1985) Further analysis of the Joyner-Boore attenuation data. Bull Seism Soc Am 75: 611–614

    Google Scholar 

  • Campbell KW, Thenhaus PC, Barnard TP, Hampson DB (2002) Seismic hazard model for loss estimation and risk management in Taiwan. Soil Dyn Earthq Eng 22: 743–754

    Article  Google Scholar 

  • Cheng CT, Chiou SJ, Lee CT, Tsai YB (2007) Study of probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. J GeoEng 2(1):19–28 http://www.sinotech.org.tw/gerc-ctr/2007.files/papers_pdf/cheng/2007-8.pdf

    Google Scholar 

  • Cheng CT, Lee CT, Lin PS, Lin BS, Tsai YB, Chiou SJ (2010) Probabilistics earthquake hazard in metropolitan Taipei and its surrounding regions. Terrest Atmos Oceanic Sci 21(3): 429–446. doi:10.3319/TAO.2009.11.11.01(TH)

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seism Soc Am 58: 1583–1606

    Google Scholar 

  • Crowley H, Bommer JJ, Pihno R, Bird J (2005) The impact of epistemic uncertainty on an earthquake loss model. Earthq Eng Struct Dyn 34: 1653–1685. doi:10.1002/eqe.498

    Article  Google Scholar 

  • Crowley H, Bommer JJ (2006) Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bull Earthquake Eng 4: 249–273. doi:10.1007/s10518-006-9011-4

    Article  Google Scholar 

  • Crowley H, Bommer JJ, Stafford PJ (2008) Recent developments in the treatment of ground-motion variability in earthquake loss model. J Earthq Eng 12(S): 71–80. doi:10.1080/13632460802013529

    Article  Google Scholar 

  • Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for estimation of peak ground acceleration and spectral ordinates. Earth Sci Rev 61: 43–104

    Article  Google Scholar 

  • Douglas J (2006) Errata and additions to “Ground motion estimation equations 1966–2003”, BRGM/RP-54603-FR

  • Ebel JE, Kafka AL (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seism Soc Am 89: 854–866

    Google Scholar 

  • Evans JR, Baker JW (2006) Spatial correlation of ground motions in NGA data. American Geophysical Union, Fall Meeting 2006, abstract #S12B-01

  • FEMA: (2003) HAZUS-MH MRS, Technical manual. Federal Emergency Management Agency, Washington, DC

    Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California with aftershocks removed Poissonian? Yes. Bull Seism Soc Am 64: 1363–1367

    Google Scholar 

  • Goda K, Hong HP (2008a) Spatial correlation of peak ground motions and response spectra. Bull Seism Soc Am 98: 354–365. doi:10.1785/0120070078

    Article  Google Scholar 

  • Goda K, Hong HP (2008b) Estimation of seismic loss for spatially distributed buildings. Earthq Spectra 24: 889–910. doi:10.1193/1.2983654

    Article  Google Scholar 

  • Goda K, Hong HP (2009) Deaggregation of seismic loss of spatially distributed buildings. Bull Earthquake Eng 7: 255–272. doi:10.1007/s10518-008-9093-2

    Article  Google Scholar 

  • Goda K, Atkinson GM (2009) Probabilistic characterization of spatially correlated response spectra for earthquakes in Japan. Bull Seism Soc Am 99: 3003–3020. doi:10.1785/0120090007

    Article  Google Scholar 

  • Goda K, Atkinson GM (2010) Intraevent spatial correlation of ground-motion parameters using SK-net data. Bull Seism Soc Am 100: 3055–3067. doi:10.1785/0120100031

    Article  Google Scholar 

  • Hok S, Wald DJ (2003) Spatial variability of peak strong ground motions: implications for ShakeMap interpolations. EOS Trans Am Geophys Union 84(46): F1121

    Google Scholar 

  • Hong HP, Zhang Y, Goda K (2009) Effect of spatial correlation on estimated ground motion-prediction equations. Bull Seism Soc Am 99: 928–934. doi:10.1785/0120080172

    Article  Google Scholar 

  • Jayaram N, Baker JW (2009) Correlation model for spatially-distributed ground-motion intensities. Earthq Eng Struct Dyn 38: 1687–1708. doi:10.1002/eqe.922

    Article  Google Scholar 

  • Johnson ME (1987) Multivariate statistical simulation. Wiley Series in Probability and Mathematical Statistics. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  • Joyner WB, Boore DM (1993) Methods for regression analysis of strong-motion data. Bull Seism Soc Am 83: 469–487

    Google Scholar 

  • Kawakami H, Mogi H (2003) Analyzing spatial intraevent variability of peak ground accelerations as a function of separation distance. Bull Seism Soc Am 93: 1079–1090. doi:10.1785/0120020026

    Article  Google Scholar 

  • Lee R, Kiremidjian AS, Stergiou E (2004) Uncertainty and correlation of network components losses for a spatially distributed system. In: Proceedings of 13th world conference on earthquake engineering, Vancouver, Canada, August 1–6; Paper 989

  • Lee R, Kiremidjian AS (2007) Uncertainty and correlation for loss assessment of spatially distributed systems. Earthq Spectra 23: 753–770. doi:10.1193/1.2791001

    Article  Google Scholar 

  • Liao WI, Loh CH, Tsai KC (2006) Study of the fragility of building structures in Taiwan. Nat Hazards 37(1-2): 55–69. doi:10.1007/s11069-005-4656-x

    Article  Google Scholar 

  • Liao WI, Loh CH (2004) Preliminary study of the fragility curves for highway bridges in Taiwan. J Chin Inst Eng 27(3): 367–375

    Article  Google Scholar 

  • Lin KW, Wald D, Worden B, Shakal AF (2006) Progress toward quantifying CISN ShakeMap uncertainty. In: Eighth national conference on earthquake engineering, San Francisco, California, April 18–21, 2006

  • Lin PS, Lee CT (2008) Ground motion attenuation relationships for subduction-zone earthquakes in Northeastern Taiwan. Bull Seism Soc Am 98: 220–240. doi:10.1785/0120060002

    Article  Google Scholar 

  • Li C, Chiu HC (1989) A simple method to estimate the seismic moment from seismograms. Proc Geol Soc China 32: 197–207

    Google Scholar 

  • Loh CH, Yeh YT, Jean WY, Yeh YH (1991) Probabilistic seismic risk analysis in the Taiwan area based on PGA and spectral amplitude attenuation formulas. Eng Geol 30: 277–304

    Article  Google Scholar 

  • Loh CH, Jean WY (1997) Seismic zoning on ground motion in Taiwan area. In: Proceedings of 14th international conference on soil mechanics and foundation engineering, Germany, 6–12 September, 1997, pp 71–79

  • Mander JB (1999) Fragility curve development for assessing the seismic vulnerability of highway bridges. University at Buffalo, State University of New York, MCEER Research Progress and Accomplishments, Research Summary 1997–1999. Available in http://mceer.buffalo.edu/publications/resaccom/99-sp01/chl0mand.pdf

  • McVerry GH, Rhoades DA, Smith WD (2004) Joint hazard of earthquake shaking at multiple locations. In: Proceedings of 13th world conference on earthquake engineering, Vancouver, Canada, August 1–6, 2004. Paper 646

  • Molas GL, Anderson R, Seneviratna P, Winkler T (2006) Uncertainty of portfolio loss estimates for large earthquakes. In: Proceedings of first European conference on earthquake engineering and seismology, Geneva, Switzerland, 3–8 September 2006: Paper 1117

  • Molchan GM, Dmitrieva OE (1992) Aftershock identification: methods and new approaches. Geophys J Int 109: 501–516

    Article  Google Scholar 

  • Musson RMW (1999) Determination of design earthquakes in seismic hazard analysis through Monte Carlo simulation. J Earthq Eng 3(4): 463–474

    Article  Google Scholar 

  • Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Ann Geofis 43(1): 1–9

    Google Scholar 

  • Park J, Bazzurro P, Baker JW (2007) Modeling spatial correlation of ground motion intensity measures for regional seismic hazard and portfolio loss estimations. In: Kanda, Takada, Furuta (eds) Applications of statistics and probability in civil engineering. Taylor & Francis Group, London, pp 1–8

    Google Scholar 

  • Porter K, Beck JL, Shaikhitdinov RV (2002) Sensitivity of building loss estimates to major uncertain variables. Earthq Spectra 18: 719–743. doi:10.1193/1.1516201

    Article  Google Scholar 

  • Rhoades DA, McVerry GH (2001) Joint hazard of earthquake shaking at two or more locations. Earthq Spectra 17(4): 697–710. doi:10.1193/1.1423903

    Article  Google Scholar 

  • Robinson D, Dhu T, Schneider J (2006) Practical probabilistic seismic risk analysis: a demonstration of capability. Seismol Res Lett 77(4): 453–459. doi:10.1785/gssrl.77.4.453

    Article  Google Scholar 

  • Sokolov V, Loh CH, Wen KL (2001) Site-dependent input ground motion estimations for the Taipei area: a probabilistic approach. Probab Eng Mech 16(2): 177–191

    Article  Google Scholar 

  • Sokolov V, Wenzel F, Jean WY, Wen KL (2010) Uncertainty and spatial correlation of earthquake ground motion in Taiwan. Terrest Atmos Oceanic Sci (TAO) 21(6): 905–921. doi:10.3319/TAO.2010.05.03.01(T)

    Article  Google Scholar 

  • Sokolov V, Wenzel F (2010) Influence of spatial correlation of strong ground-motion on uncertainty in earthquake loss estimation. Earthq Eng Struct Dyn (Online first). doi:10.1002/eqe.1074

  • Stergiou E, Kiremidjian AS (2006) Treatment of uncertainties in seismic risk analysis of transportation systems. The John A Blume Earthquake Engineering Center, Report 154

  • Tsai CCP, Loh CH, Yeh YT (1987) Analysis of earthquake risk in Taiwan based on seismitectonic zones. Memoir Geol Soc China 9: 413–446

    Google Scholar 

  • Tsai CCP, Chen YH, Liu CH (2006) The path effect in ground-motion variability: an application of the variance-component technique. Bull Seism Soc Am 96: 1170–1176. doi:10.1785/0120050155

    Article  Google Scholar 

  • Wang JH, Liu CC, Tsai YB (1989) Local magnitude determined from a simulated Wood-Anderson seismograph. Tectonophysics 166: 15–26

    Article  Google Scholar 

  • Wang M, Takada T (2005) Macrospatial correlation model of seismic ground motions. Earthq Spectra 21(4): 1137–1156. doi:10.1193/1.2083887

    Article  Google Scholar 

  • Wesson RL, Perkins DM (2001) Spatial correlation of probabilistic earthquake ground motion and loss. Bull Seism Soc Am 91: 1498–1515. doi:10.1785/0120000284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sokolov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, V., Wenzel, F. Influence of ground-motion correlation on probabilistic assessments of seismic hazard and loss: sensitivity analysis. Bull Earthquake Eng 9, 1339–1360 (2011). https://doi.org/10.1007/s10518-011-9264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-011-9264-4

Keywords

Navigation