Skip to main content
Log in

Safety Assessment: a Comparative Analysis of Quantitative Content of Bacterial Endotoxins and Evaluation of Pyrogenicity of the Kazakhstan Vaccine QazCovid-in® against COVID-19

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We measured the levels of bacterial endotoxins in the bulk vaccine product (BVP) and finished vaccine QazCovid-in® and evaluated the effect of aluminum hydroxide (adjuvant) on the results of LAL test and pyrogenicity of samples in vivo (in rabbits receiving intravenous injection into the marginal ear vein). Administration of BVP with LPS resulted in a dose-dependent increase in body temperature in rabbits similar to that caused by LPS alone, which suggests that aluminum hydroxide in the vaccine did not affect the pyrogenic response in rabbits. Moreover, the LAL test showed that the aluminum hydroxide did not hinder LPS activity after serial dilution of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng SQ, Peng HJ. Characteristics of and public health responses to the Coronavirus disease 2019 outbreak in China. J. Clin. Med. 2020;9(2):575. https://doi.org/10.3390/jcm9020575

    Article  PubMed  PubMed Central  Google Scholar 

  2. Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect. 2020;80(4):373-377. https://doi.org/10.1016/j.jinf.2020.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nurpeisova A, Khairullin B, Abitaev R, Shorayeva K, Jekebekov K, Kalimolda E, Kerimbayev A, Akylbayeva K, Abay Z, Myrzakhmetova B, Nakhanov A, Absatova Z, Nura-bayev S, Orynbayev M, Assanzhanova N, Abeuov K, Kutumbetov L, Kassenov M, Abduraimov Y, Zakarya K. Sa-fety and immunogenicity of the first Kazakh inactivated vaccine for COVID-19. Hum. Vaccines Immunother. 2022;18(5):2087412. https://doi.org/10.1080/21645515.2022.2087412

    Article  CAS  Google Scholar 

  4. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. https://doi.org/10.1001/jama.2020.1585

    Article  CAS  PubMed  Google Scholar 

  5. Chenchula S, Karunakaran P, Sharma S, Chavan M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J. Med. Virol. 2022;94(7):2969-2976. https://doi.org/10.1002/jmv.27697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tizard IR. Vaccination against coronaviruses in domestic animals. Vaccine. 2020;38(33):5123-5130. https://doi.org/10.1016/j.vaccine.2020.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao Y, Zhang Y, Qiu F. Low endotoxin recovery and its impact on endotoxin detection. Biopolymers. 2021;112(11):e23470. https://doi.org/10.1002/bip.23470

    Article  CAS  PubMed  Google Scholar 

  8. Jin Y, Jia J, Li C, Xue J, Sun J, Wang K, Gan Y, Xu J, Shi Y, Liang X. LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG2000 nanoformulation: What if traditional methods are not applicable? Asian J. Pharm. Sci. 2018;13(3):289-296. https://doi.org/10.1016/j.ajps.2017.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fennrich S, Hennig U, Toliashvili L, Schlensak C, Wendel HP, Stoppelkamp S. More than 70 years of pyrogen detection: Current state and future perspectives. Altern. Lab Anim. 2016;44(3):239-253. https://doi.org/10.1177/026119291604400305

    Article  PubMed  Google Scholar 

  10. Etna MP, Giacomini E, Rizzo F, Severa M, Ricci D, Shaid S, Lambrigts D, Valentini S, Galli Stampino L, Alleri L, Gaggioli A, Von Hunolstein C, Spreitzer I, Coccia EM. Optimization of the monocyte activation test for evaluating pyrogenicity of tick-borne encephalitis virus vaccine. ALTEX. 2020;37(4):532-544. https://doi.org/10.14573/altex.2002252

  11. Valentini S, Santoro G, Baffetta F, Franceschi S, Paludi M, Brandini E, Gherardini L, Serruto D, Capecchi B. Monocyte-activation test to reliably measure the pyrogenic content of a vaccine: An in vitro pyrogen test to overcome in vivo limitations. Vaccine. 2019;37(29):3754-3760. https://doi.org/10.1016/j.vaccine.2018.10.082

    Article  CAS  PubMed  Google Scholar 

  12. Fernandes Silva V, da Silva Guedes Junior D, da Silveira IA, Santos Almeida A, de Paiva Conte F, Fernandes Delgado I, Caldeira Silva C, França Presgrave OA, Antunes de Mattos K. A comparison of pyrogen detection tests in the quality control of meningococcal conjugate vaccines: The applicability of the Monocyte Activation Test. Altern. Lab Anim. 2018;46(5):255-272. https://doi.org/10.1177/026119291804600506

  13. Shi Y, HogenEsch H, Regnier FE, Hem SL. Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine. 2001;19(13-14):1747-1752. https://doi.org/10.1016/s0264-410x(00)00394-7

    Article  CAS  PubMed  Google Scholar 

  14. Park CY, Jung SH, Bak JP, Lee SS, Rhee DK. Comparison of the rabbit pyrogen test and Limulus amoebocyte lysate (LAL) assay for endotoxin in hepatitis B vaccines and the effect of aluminum hydroxide. Biologicals. 2005;33(3):145-151. https://doi.org/10.1016/j.biologicals.2005.04.002

    Article  CAS  PubMed  Google Scholar 

  15. Park CY, Lee SS, Rhee DK. Effect of aluminum on TNF-α secretion from murine RAW264.7 cells for endotoxin detection in hepatitis B vaccines. J. Microbiol. Biotechnol. 2006;16(2):219-225.

  16. Zhugunissov K, Zakarya K, Khairullin B, Orynbayev M, Abduraimov Y, Kassenov M, Sultankulova K, Kerimbayev A, Nurabayev S, Myrzakhmetova B, Nakhanov A, Nurpeisova A, Chervyakova O, Assanzhanova N, Burashev Y, Mambetaliyev M, Azanbekova M, Kopeyev S, Kozhabergenov N, Issabek A, Tuyskanova M, Kutumbetov L. Development of the inactivated QazCovid-in vaccine: Protective efficacy of the vaccine in Syrian hamsters. Front. Microbiol. 2021;12:720437. https://doi.org/10.3389/fmicb.2021.720437

    Article  PubMed  PubMed Central  Google Scholar 

  17. Generalov SV, Abramova EG, Gavrilova YuK. Bioethical aspects of improving the production of rabies immunoglobulin in Russia. BIOpreparaty. Profilaktika. Diagnostika. Lechenie. 2020;20(2):89-96. Russian. https://doi.org/10.30895/2221-996X-2020-20-2-89-96

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shorayeva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 176, No. 10, pp. 449-454, October, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jekebekov, K.K., Nurpeisova, A.S., Abay, Z. et al. Safety Assessment: a Comparative Analysis of Quantitative Content of Bacterial Endotoxins and Evaluation of Pyrogenicity of the Kazakhstan Vaccine QazCovid-in® against COVID-19. Bull Exp Biol Med 176, 452–456 (2024). https://doi.org/10.1007/s10517-024-06045-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06045-8

Key Words

Navigation