Skip to main content

Advertisement

Log in

Regulation of Morphogenetic Processes during Postnatal Development and Physiological Regeneration of the Adrenal Medulla

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Regulation of morphogenetic processes during postnatal development of the rat adrenal medulla was studied. Termination of the adrenal medulla growth was found to be associated with decreased chromaffin cell proliferation, activation of canonical Wnt-signaling pathway, and enhanced expression of Sonic Hedgehog ligand. Analysis of transcription factors associated with pluripotency revealed increased percentage of Oct4-expressing cells by the end of medulla growth and no signs of Sox2 expression. All the cells demonstrating activation of Wnt-signaling and expression of Oct4 and Sonic Hedgehog were found to be highly differentiated chromaffin cells actively producing tyrosine hydroxylase. These findings allow considering the formation of the cell pools for dedifferentiation as a putative mechanism for physiological regeneration of the adrenal medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357:eaal3753. https://doi.org/10.1126/science.aal3753

  2. Yaglova NV, Obernikhin SS, Nazimova SV, Timokhina EP, Yaglov VV. Changes in the expression of transcription factor Oct4 during postnatal development of adrenal medulla. Bull. Exp. Biol. Med. 2022;173(6):783-786. https://doi.org/10.1007/s10517-022-05631-y

    Article  CAS  PubMed  Google Scholar 

  3. Yang H, Liu C, Fan H, Chen B, Huang D, Zhang L, Zhang Q, An J, Zhao J, Wang Y, Hao D. Sonic Hedgehog effectively improves Oct4-mediated reprogramming of astrocytes into neural stem cells. Mol. Ther. 2019;27(8):1467-1482. https://doi.org/10.1016/j.ymthe.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Finco I, Lerario AM, Hammer GD. Sonic Hedgehog and WNT signaling promote adrenal gland regeneration in male mice. Endocrinology. 2018;159(2):579-596. https://doi.org/10.1210/en.2017-03061

    Article  CAS  PubMed  Google Scholar 

  5. Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 2010;1(5):39. https://doi.org/10.1186/scrt39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vukicevic V, Schmid J, Hermann A, Lange S, Qin N, Gebauer L, Chunk KF, Ravens U, Eisenhofer G, Storch A, Ader M, Bornstein SR, Ehrhart-Bornstein M. Differentiation of chromaffin progenitor cells to dopaminergic neurons. Cell Transplant. 2012;21(11):2471-2486. https://doi.org/10.3727/096368912X638874

    Article  PubMed  Google Scholar 

  7. Pignatelli D, Xiao F, Gouveia AM, Ferreira JG, Vinson GP. Adrenarche in the rat. J. Endocrinol. 2006;191(1):301-308. https://doi.org/10.1677/joe.1.06972

    Article  CAS  PubMed  Google Scholar 

  8. Kim JH, Choi MH. Embryonic development and adult regeneration of the adrenal gland. Endocrinol. Metab. (Seoul). 2020;35(4):765-773. https://doi.org/10.3803/EnM.2020.403

    Article  CAS  PubMed  Google Scholar 

  9. Yaglova NV, Obernikhin SS, Tsomartova DA, Nazimova SV, Yaglov VV. Expression of transcription factor PRH/Hhex in adrenal chromaffin cells in the postnatal development and its role in the regulation of proliferative processes. Bull. Exp. Biol. Med. 2018;165(4):508-511. https://doi.org/10.1007/s10517-018-4205-8

    Article  CAS  PubMed  Google Scholar 

  10. Mulligan KA, Cheyette BN. Wnt signaling in vertebrate neural development and function. J. Neuroimmune Pharmacol. 2012;7(4):774-787. https://doi.org/10.1007/s11481-012-9404-x

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K. Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev. 2013;8:12. https://doi.org/10.1186/1749-8104-8-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilson NH, Stoeckli ET. Sonic Hedgehog regulates Wnt activity during neural circuit formation. Vitam. Horm. 2012;88:173-209. https://doi.org/10.1016/B978-0-12-394622-5.00008-0

    Article  CAS  PubMed  Google Scholar 

  13. Ho KS, Scott MP. Sonic hedgehog in the nervous system: functions, modifications and mechanisms. Curr. Opin. Neurobiol. 2002;12(1):57-63. https://doi.org/10.1016/s0959-4388(02)00290-8

    Article  CAS  PubMed  Google Scholar 

  14. Sims JR, Lee SW, Topalkara K, Qiu J, Xu J, Zhou Z, Moskowitz MA. Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke. 2009;40(11):3618-3626. https://doi.org/10.1161/STROKEAHA.109.561951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji H, Miao J, Zhang X, Du Y, Liu H, Li S, Li L. Inhibition of sonic hedgehog signaling aggravates brain damage associated with the down-regulation of Gli1, Ptch1 and SOD1 expression in acute ischemic stroke. Neurosci. Lett. 2012;506(1):1-6. https://doi.org/10.1016/j.neulet.2011.11.027

    Article  CAS  PubMed  Google Scholar 

  16. Wu G, Schöler HR. Role of Oct4 in the early embryo development. Cell Regen. 2014;3(1):7. https://doi.org/10.1186/2045-9769-3-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene. 2020;39(2):278-292. https://doi.org/10.1038/s41388-019-0997-x

    Article  CAS  PubMed  Google Scholar 

  18. Wu G, Han D, Gong Y, Sebastiano V, Gentile L, Singhal N, Adachi K, Fischedick G, Ortmeier C, Sinn M, Radstaak M, Tomilin A, Schöler HR. Establishment of totipotency does not depend on Oct4A. Nat. Cell Biol. 2013;15(9):1089-1097. https://doi.org/10.1038/ncb2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esch D, Vahokoski J, Groves MR, Pogenberg V, Cojocaru V, Vom Bruch H, Han D, Drexler HC, Araúzo-Bravo MJ, Ng CK, Jauch R, Wilmanns M, Schöler HR. A unique Oct4 interface is crucial for reprogramming to pluripotency. Nat. Cell Biol. 2013;15(3):295-301. https://doi.org/10.1038/ncb2680

    Article  CAS  PubMed  Google Scholar 

  20. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 2007;9(6):625-635. https://doi.org/10.1038/ncb1589

    Article  CAS  PubMed  Google Scholar 

  21. Weihe E, Depboylu C, Schütz B, Schäfer MK, Eiden LE. Three types of tyrosine hydroxylase-positive CNS neurons distinguished by dopa decarboxylase and VMAT2 co-expression. Cell Mol. Neurobiol. 2006;26(4-6):659-678. https://doi.org/10.1007/s10571-006-9053-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yaglova NV, Obernikhin SS, Nazimova SV, Yaglov VV. Role of transcription factor Oct4 in postnatal development and function of the adrenal cortex. Bull. Exp. Biol. Med. 2019;167(4):568-573. https://doi.org/10.1007/s10517-019-04573-2

    Article  CAS  PubMed  Google Scholar 

  23. Yaglova NV, Obernikhin SS, Yaglov VV, Nazimova SV, Timokhina EP, Tsomartova DA. Low-dose exposure to endocrine disruptor dichlorodiphenyltrichloroethane (DDT) affects transcriptional regulation of adrenal zona reticularis in male rats. Bull. Exp. Biol. Med. 2021;170(5):682-685. https://doi.org/10.1007/s10517-021-05132-4

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Izpisua Belmonte JC. Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 2018;20(4):382-392. https://doi.org/10.1038/s41556-018-0067-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lo JH, Edwards M, Langerman J, Sridharan R, Plath K, Smale ST. Oct4:Sox2 binding is essential for establishing but not maintaining active and silent states of dynamically regulated genes in pluripotent cells. Genes Dev. 2022;36(19-20):1079-1095. https://doi.org/10.1101/gad.350113.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yaglov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 98-105, June, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obernikhin, S.S., Yaglova, N.V., Timokhina, E.P. et al. Regulation of Morphogenetic Processes during Postnatal Development and Physiological Regeneration of the Adrenal Medulla. Bull Exp Biol Med 175, 549–556 (2023). https://doi.org/10.1007/s10517-023-05903-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05903-1

Keywords

Navigation