Skip to main content

Advertisement

Log in

Proliferative Markers and Neural Stem Cells Markers in Tanycytes of the Third Cerebral Ventricle in Rats

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The proliferative properties of tanycyte subpopulations during postnatal development and aging were studied. Using immunohistochemical markers, we described the distribution of proliferative markers and markers of neural stem cells (NSC) in 4 tanycyte subpopulations (α1-, α2-, β1-, and β2-tanycytes). During the first postnatal week, all tanycyte subpopulations exhibit proliferative activity. During aging, β-tanycytes lose their proliferative activity and retain a limited set of NSC markers, whereas α-tanycytes maintain both the ability to proliferate and the properties of NSC throughout the entire postnatal development including aging. The data obtained significantly improve modern understanding of the proliferative potential of tanycytes and their subpopulation differences in early postnatal period and during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrova MA, Marey MV. Stem Cells in the Brain of Mammals and Human: Fundamental and Applied Aspects. Zh. Vyssh. Nervn. Deyat. 2015;65(3):271-305. Russian. https://doi.org/10.7868/S004446771503003X

  2. Toda T, Gage FH. Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018;373(3):693-709. https://doi.org/10.1007/s00441-017-2735-4

    Article  PubMed  Google Scholar 

  3. La Rosa C, Parolisi R, Bonfanti L. Brain structural plasticity: from adult neurogenesis to immature neurons. Front. Neurosci. 2020;14:75. https://doi.org/10.3389/fnins.2020.00075

    Article  PubMed  PubMed Central  Google Scholar 

  4. Recabal A, Caprile T, García-Robles MLA. Hypothalamic neurogenesis as an adaptive metabolic mechanism. Front. Neurosci. 2017;11:190. https://doi.org/10.3389/fnins.2017.00190

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng MF. Hypothalamic neurogenesis in the adult brain. Front. Neuroendocrinol. 2013;34(3):167-178. https://doi.org/10.1016/j.yfrne.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  6. Rodríguez E, Guerra M, Peruzzo B, Blázquez JL. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. J. Neuroendocrinol. 2019;31(3):e12690. https://doi.org/10.1111/jne.12690

  7. Rodríguez EM, Blázquez JL, Pastor FE, Peláez B, Peña P, Peruzzo B, Amat P. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int. Rev. Cytol. 2005;247:89-164. https://doi.org/10.1016/S0074-7696(05)47003-5

    Article  CAS  PubMed  Google Scholar 

  8. Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 2018;39(3):333-368. https://doi.org/10.1210/er.2017-00235

    Article  PubMed  Google Scholar 

  9. Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 2013;4:2049. https://doi.org/10.1038/ncomms3049

    Article  CAS  PubMed  Google Scholar 

  10. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschöp MH, Horvath TL. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 2014;17(7):908-910. https://doi.org/10.1038/nn.3725

    Article  CAS  PubMed  Google Scholar 

  11. Sharif A, Prevot V. When size matters: how astrocytic processes shape metabolism. Cell Metab. 2017;25(5):995-996. https://doi.org/10.1016/j.cmet.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  12. Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front. Cell Neurosci. 2015;8:440. https://doi.org/10.3389/fncel.2014.00440

    Article  PubMed  PubMed Central  Google Scholar 

  13. Korzhevskii DE, Sukhorukova EG, Kirik OV, Grigorev IP. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur. J. Histochem. 2015;59(3):2530. https://doi.org/10.4081/ejh.2015.2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. New York, 2007.

  15. Sawicka A, Seiser C. Histone H3 phosphorylation — a versatile chromatin modification for different occasions. Biochimie. 2012;94(11):2193-2201. https://doi.org/10.1016/j.biochi.2012.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin. Epigenetics. 2020;12(1):147. https://doi.org/10.1186/s13148-020-00941-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016;118(5):544-552. https://doi.org/10.1016/j.acthis.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  18. Kirik OV, Beznin GV, Korzhevskiy DE. Proliferation markers used in histological studies. Morfologiya. 2009;136(6):95-100. Russian.

  19. Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J. Neurosci. 2013;33(14):6170-6180. https://doi.org/10.1523/JNEUROSCI.2437-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells. 2014;6(3):305-311. https://doi.org/10.4252/wjsc.v6.i3.305

    Article  PubMed  PubMed Central  Google Scholar 

  21. Forouzanfar M, Lachinani L, Dormiani K, Nasr-Esfahani MH, Gure AO, Ghaedi K. Intracellular functions of RNA-binding protein, Musashi1, in stem and cancer cells. Stem Cell Res. Ther. 2020;11(1):193. https://doi.org/10.1186/s13287-020-01703-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zoli M, Ferraguti F, Frasoldati A, Biagini G, Agnati LF. Age-related alterations in tanycytes of the mediobasal hypothalamus of the male rat. Neurobiol. Aging. 1995;16(1):77-83. https://doi.org/10.1016/0197-4580(95)80010-o

    Article  CAS  PubMed  Google Scholar 

  23. Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep. 2021;44(2):zsaa173. https://doi.org/10.1093/sleep/zsaa173

  24. Chaker Z, George C, Petrovska M, Caron JB, Lacube P, Caillé I, Holzenberger M. Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-I pathway. Neurobiol. Aging. 2016;41:64-72. https://doi.org/10.1016/j.neurobiolaging.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548:52-57. https://doi.org/10.1038/nature23282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sufieva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 254-260, December, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sufieva, D.A., Korzhevskii, D.E. Proliferative Markers and Neural Stem Cells Markers in Tanycytes of the Third Cerebral Ventricle in Rats. Bull Exp Biol Med 174, 564–570 (2023). https://doi.org/10.1007/s10517-023-05748-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05748-8

Key Words

Navigation