Skip to main content
Log in

Cytokine Profile in Experimental Models of Critical Limb Ischemia in Rats

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of intramuscular administration of a cellular product (mesenchymal stem cells, conditioned media, and erythropoietin) on cytokine levels in blood serum, conditioned media of bone marrow mononuclears, and calf muscles in Wistar rats with hind limb ischemia. It is shown that the cellular product reduces the proinflammatory background at the early stages of the experiment and increases the content proangiogenic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebedev SV, Karasev AV, Kungurtsev VV, Lokhonina AV, Kleymenova EB. Cell therapy of critical limb ischemia (problems and prospects). Vestn. Ross. Akad. Med. Nauk. 2013;68(3):33-44. Russian.

    Article  Google Scholar 

  2. Poveshchenko OV, Lykov AP, Bondarenko NA, Kim II, Yankaite EV, Kazakov OV, Surovtseva MA, Bgatova NP, Karpenko AA, Pokushalov EA, Konenkov VI. Efficacy of intramuscular administration of stem/progenitor cells in the lower limb ischemia model experiment. Angiologiya Sosud. Khir. 2016;22(4):51-54. Russian.

    CAS  Google Scholar 

  3. Asahara T, Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol. 2004;287(3):C572-C579.

    Article  CAS  Google Scholar 

  4. Bennis Y, Sarlon-Bartoli G, Guillet B, Lucas L, Pellegrini L, Velly L, Blot-Chabaud M, Dignat-Georges F, Sabatier F, Pisano P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J. Thromb. Haemost. 2012;10(9):1914-1928.

    Article  CAS  Google Scholar 

  5. Brenes RA, Jadlowiec CC, Bear M, Hashim P, Protack CD, Li X, Lv W, Collins MJ, Dardik A. Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. J. Vasc. Surg. 2012;56(6):1669-1679.

    Article  Google Scholar 

  6. Chen L, Liu H, Yuan M, Lu W, Wang J, Wang T. The roles of interleukins in perfusion recovery after peripheral arterial disease. Biosci. Rep. 2018;38(1). pii: BSR20171455. doi: https://doi.org/10.1042/BSR20171455

  7. Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W, Chen Y, Lawton MT, Young WL, Yang GY. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J. Cereb. Blood Flow Metab. 2008;28(1):90-98.

    Article  CAS  Google Scholar 

  8. Jalkanen J, Maksimow M, Hollmen M, Jalkanen S, Hakovirta H. Compared to intermittant claudication critical limb ischemia is associated with elevated levels of cytokines. PLoS One. 2016;11(9). ID e0162353. doi: https://doi.org/10.1371/journal.pone.0162353

  9. Lawlor DK, Brock RW, Harris KA, Potter RF. Cytokines contribute to early hepatic parenchymal injury and microvascular dysfunction after bilateral hindlimb ischemia. J. Vasc. Surg. 1999;30(3):533-541.

    Article  CAS  Google Scholar 

  10. Liew A, O’Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res. Ther. 2012;3(4). ID 28. doi: https://doi.org/10.1186/scrt119

  11. Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol. 2003;73(6):713-721.

    Article  CAS  Google Scholar 

  12. Tang GL, Chang DS, Sarkar R, Wang R, Messina LM. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J. Vasc. Surg. 2005;41(2):312-320.

    Article  Google Scholar 

  13. Tebebi PA, Kim SJ, Williams RA, Milo B, Frenkel V, Burks SR, Frank JA. Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Sci. Rep. 2017;7. ID 41550. doi: https://doi.org/10.1038/srep41550

  14. Tournois C, Pignon B, Sevestre MA, Al-Rifai R, Creuza V, Poitevin G, Francois C, Nguyen P. Cell therapy in critical limb ischemia: A comprehensive analysis of two cell therapy products. Cytotherapy. 2017;19(2):299-310.

    Article  CAS  Google Scholar 

  15. Zhong W, Zhao Y, Tian Y, Chen M, Lai X. The protective effects of HGF against apoptosis in vascular endothelial cells caused by peripheral vascular injury. Acta Biochim. Biophys. Sin (Shanghai). 2018;50(7):701-708.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Lykov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 185-190, September, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykov, A.P., Bondarenko, N.A., Poveshchenko, O.V. et al. Cytokine Profile in Experimental Models of Critical Limb Ischemia in Rats. Bull Exp Biol Med 168, 150–155 (2019). https://doi.org/10.1007/s10517-019-04666-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04666-y

Key Words

Navigation