Skip to main content

Advertisement

Log in

Dysfunction of Neuromuscular Synapses in the Genetic Model of Alzheimer’s Disease

  • GENETICS
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The function of synaptic transmission and presynaptic vesicular cycle in the neuromuscular synapses of the diaphragm was studied in transgenic APP/PS1 mice (Alzheimer’s disease model). The decrease in the quantal content of end-plate potential, intense depression of the amplitude of terminal plate potentials under conditions of lasting high frequency stimulation (50 Hz), a drastic prolongation of the synaptic vesicle recycling time in APP/PS1 mice in comparison with wild type mice were detected. Manifest dysfunction of the neuromuscular synapses, caused by disordered neurosecretion and recycling of the synaptic vesicles in the presynaptic nerve endings, was detected in the Alzheimer’s disease model on transgenic APP/PS1 mice. The study supplemented the notions on the pathogenesis of Alzheimer’s disease as a systemic disease, while the detected phenomena could just partially explain the development of motor disorders in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhamedyarov MA, Volkov EM, Leushina AV, Kochunova YuO, Palotas A, Zefirov AL. Ionic and molecular mechanisms of β-amyloid-induced depolarization of the mouse skeletal muscle fibres. Ross. Fiziol. Zh. 2011;97(8):795-803. Russian.

    CAS  Google Scholar 

  2. Mukhamedyarov MA, Zefirov AL. The Influence of β-Amyloid Peptide on the Functions of Excitable Tissues: Physiological and Pathological Aspects. Uspekhi Fiziol. Nauk. 2013;44(1):55-71. Russian.

    CAS  Google Scholar 

  3. Hebert LE, Bienias JL, McCann JJ, Scherr PA, Wilson RS, Evans DA. Upper and lower extremity motor performance and functional impairment in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2010;25(5):425-431.

    Article  Google Scholar 

  4. Kuo YM, Kokjohn TA, Watson MD, Woods AS, Cotter RJ, Sue LI, Kalback WM, Emmerling MR, Beach TG, Roher AE. Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. Am. J. Pathol. 2000;156(3):797-805.

    Article  CAS  Google Scholar 

  5. Mukhamedyarov MA, Grishin SN, Yusupova ER, Zefirov AL, Palotás A. Alzheimer’s beta-amyloid-induced depolarization of skeletal muscle fibers: implications for motor dysfunctions in dementia. Cell. Physiol. Biochem. 2009;23(1-3):109-114.

    Article  CAS  Google Scholar 

  6. Mukhamedyarov MA, Teplov AY, Grishin SN, Leushina AV, Zefirov AL, Palotás A. Extraneuronal toxicity of Alzheimer’s β-amyloid peptide: comparative study on vertebrate skeletal muscles. Muscle Nerve. 2011;43(6):872-877.

    Article  CAS  Google Scholar 

  7. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl. J. Med. 2010;362(4):329-344.

    Article  CAS  Google Scholar 

  8. Rizzoli SO, Richards DA, Betz WJ. Monitoring synaptic vesicle recycling in frog motor nerve terminals with FM dyes. J. Neurocytol. 2003;32(5-8):539-549.

    Article  CAS  Google Scholar 

  9. Scarmeas N, Albert M, Brandt J, Blacker D, Hadjigeorgiou G, Papadimitriou A, Dubois B, Sarazin M, Wegesin D, Marder K, Bell K, Honig L, Stern Y. Motor signs predict poor outcomes in Alzheimer disease. Neurology. 2005;64(10):1696-1703.

    Article  CAS  Google Scholar 

  10. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789-791.

    Article  CAS  Google Scholar 

  11. Sheng M, Sabatini BL, Südhof TC. Synapses and Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 2012;4(5). pii: a005777. doi: https://doi.org/10.1101/cshperspect.a005777.

    Article  Google Scholar 

  12. Swanberg MM, Tractenberg RE, Mohs R, Thal LJ, Cummings JL. Executive dysfunction in Alzheimer disease. Arch. Neurol. 2004;61(4):556-560.

    Article  Google Scholar 

  13. van Halteren-van Tilborg IA, Scherder EJ, Hulstijn W. Motorskill learning in Alzheimer’s disease: a review with an eye to the clinical practice. Neuropsychol. Rev. 2007;17(3):203-212.

  14. Zefirov AL, Abdrakhmanov MM, Mukhamedyarov MA, Grigoryev PN. The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals. Neuroscience. 2006;143(4):905-910.

    Article  CAS  Google Scholar 

  15. Zefirov AL, Zakharov AV, Mukhametzyanov RD, Petrov AM, Sitdikova GF. The vesicle cycle in motor nerve endings of the mouse diaphragm. Neurosci. Behav. Physiol. 2009;39(3):245-252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mukhamedyarov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 165, No. 5, pp. 614-619, May, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedyarov, M.A., Grigor’ev, P.N., Ushanova, E.A. et al. Dysfunction of Neuromuscular Synapses in the Genetic Model of Alzheimer’s Disease. Bull Exp Biol Med 165, 669–673 (2018). https://doi.org/10.1007/s10517-018-4238-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4238-z

Key Words

Navigation