Skip to main content
Log in

Human Umbilical Cord Mesenchymal Stromal Cells Support Viability of Umbilical Cord Blood Hematopoietic Stem Cells but not the “Stemness” of Their Progeny in Co-Culture

  • CELL TECHNOLOGIES IN BIOLOGY AND MEDICINE
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Cell—cell interactions and the ability of mesenchymal stromal cells to support the expansion of hematopoietic progenitor cells were studied in co-culture of human umbilical cord tissue-derived mesenchymal stromal cells and nucleated umbilical cord blood cells. It was found that hematopoietic stem cells from the umbilical cord blood are capable to adhere to mesenchymal stromal cells and proliferate during 3-4 weeks in co-culture. However, despite the formation of hematopoietic foci and accumulation of CD34+ and CD133+ cells in the adherent cell fraction, the ability of newly generated blood cells to form colonies in semi-solid culture medium was appreciably reduced. These findings suggest that human umbilical cord tissue-derived mesenchymal stromal cells display a weak capability to support the “stemness” of hematopoietic stem cell progeny despite long-term maintenance of their viability and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai L, Li D, Li J, Luo Z, Yu S, Cao S, Shen L, Zuo Z, Ma X. Bioactive molecules derived from umbilical cord mesenchymal stem cells. Acta Histochem. 2016;118(8):761-769.

    Article  CAS  PubMed  Google Scholar 

  2. Bakhshi T, Zabriskie RC, Bodie S, Kidd S, Ramin S, Paganessi LA, Gregory SA, Fung HC, Christopherson KW 2nd. Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion. 2008;48(12):2638-2644.

  3. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122(4):491-498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beksac M. Is there any reason to prefer cord blood instead of adult donors for hematopoietic stem cell transplants? Front. Med. (Lausanne). 2016;2:95. doi: https://doi.org/10.3389/fmed.2015.00095.

    Google Scholar 

  5. Broxmeyer HE. Umbilical cord transplantation: epilogue. Semin. Hematol. 2010;47(1):97-103.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Flores-Guzmán P, Fernández-Sánchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl. Med. 2013;2(11):830-838.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, Cooper S, English D, Kurtzberg J, Bard J, Boyse EA. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N. Engl. J. Med. 1989;26(321(17):1174-1178.

    Article  Google Scholar 

  8. Gluckman E, Rocha V. Cord blood transplantation: state of the art. Haematologica. 2009;94(4):451-454.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed. Res. Int. 2015;2015. ID 430847. doi: 10.1155/2015/430847.

  10. Kwon A, Kim Y, Kim M, Kim J, Choi H, Jekarl DW, Lee S, Kim JM, Shin JC, Park IY. Tissue-specific differentiation potency of mesenchymal stromal cells from perinatal tissues. Sci. Rep. 2016;6. ID 23544. doi: 10.1038/srep23544.

  11. Maslova EV, Andreeva ER, Andrianova IV, Bobyleva PI, Romanov YA, Kabaeva NV, Balashova EE, Ryaskina SS, Dugina TN, Buravkova LB. Enrichment of umbilical cord blood mononuclears with hemopoietic precursors in co-culture with mesenchymal stromal cells from human adipose tissue. Bull. Exp. Biol. Med. 2014;156(4):584-589.

    Article  CAS  PubMed  Google Scholar 

  12. Metheny L, Caimi P, de Lima M. Cord blood transplantation: can we make it better? Front. Oncol. 2013;3:238. doi: https://doi.org/10.3389/fonc.2013.00238.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: A proteomic analysis. Stem Cells Dev. 2016;25(14):1073-1083.

    Article  CAS  PubMed  Google Scholar 

  14. Romanov YA, Balashova EE, Bystrykh OA, Titkov KV, Dugina TN, Kabaeva NV, Fedorova TA, Rogachevskii OV, Degtyarev DN, Sukhikh GT. Umbilical cord blood for autologous transfusion in the early postnatal ontogeny: analysis of cell composition and viability during long-term culturing. Bull. Exp. Biol. Med. 2015;158(4):523-527.

    Article  PubMed  Google Scholar 

  15. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Changes in cell composition of umbilical cord blood and functional activity of hematopoietic stem cells during cryogenic storage and repeated freezing/thawing cycles. Bull. Exp. Biol. Med. 2016;160(4):571-574.

    Article  CAS  PubMed  Google Scholar 

  16. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Isolation of multipotent mesenchymal stromal cells from cryopreserved human umbilical cord tissue. Bull. Exp. Biol. Med. 2016;160(4):530-534.

    Article  CAS  PubMed  Google Scholar 

  17. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Optimized protocol for isolation of multipotent mesenchymal stromal cells from human umbilical cord. Bull. Exp. Biol. Med. 2015;160(1):148-154.

    Article  CAS  PubMed  Google Scholar 

  18. Sotnezova EV, Andreeva ER, Grigoriev AI, Buravkova LB. Ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Naturae. 2016;8(3):6-16.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sotnezova EV, Gornostaeva AN, Andreeva ER, Romanov YA, Balashova EE, Buravkova LB. Effect of stromal cells and oxygen concentration on the maintenance of cord blood hematopoietic precursors. Tsitologiia. 2015;57(6):428-435.

    CAS  PubMed  Google Scholar 

  20. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell. Mol. Med. 2010;14(1-2):337-350.

    Article  CAS  PubMed  Google Scholar 

  21. Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy. 2015;17(1):18-24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Romanov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 71-76, June, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, Y.A., Volgina, N.E., Balashova, E.E. et al. Human Umbilical Cord Mesenchymal Stromal Cells Support Viability of Umbilical Cord Blood Hematopoietic Stem Cells but not the “Stemness” of Their Progeny in Co-Culture. Bull Exp Biol Med 163, 523–527 (2017). https://doi.org/10.1007/s10517-017-3843-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3843-6

Key Words

Navigation