Skip to main content
Log in

Multi-robot online sensing strategies for the construction of communication maps

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper tackles the problem of constructing a communication map of a known environment using multiple robots. A communication map encodes information on whether two robots can communicate when they are at two arbitrary locations and plays a fundamental role for a multi-robot system deployment to reliably and effectively achieve a variety of tasks, such as environmental monitoring and exploration. Previous work on communication map building typically considered only scenarios with a fixed base station and designed offline methods, which did not exploit data collected online by the robots. This paper proposes Gaussian Process-based online methods to efficiently build a communication map with multiple robots. Such robots form a mesh network, where there is no fixed base station. Specifically, we provide two leader-follower online sensing strategies to coordinate and guide the robots while collecting data. Furthermore, we improve the performance and computational efficiency by exploiting prior communication models that can be built from the physical map of the environment. Extensive experimental results in simulation and with a team of TurtleBot 2 platforms validate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. It should be noted that all these path-loss models are independent of the used communication frequency, i.e., they do not restrict the analysis to WiFi/LTE, etc.

  2. We slightly change the notation of the original papers to make notation uniform and consistent with that used in this paper and to highlight variables and parameters.

  3. Gain is defined in terms of the antenna’s capability to send/receive signals in a direction.

  4. All experiments were conducted at night time, so the interference due to moving objects/humans is minimal, except for the people performing the experiment.

References

  • Amigoni, F., Basilico, N., & Quattrini Li, A. (2013). How much worth is coordination of mobile robots for exploration in search and rescue? In Chen, X., Stone, P., Sucar, L. E., & Zant, T. (eds) RoboCup 2012: Robot soccer world cup XVI, No. 7500 in Lecture Notes in Computer Science, Springer (pp. 106–117).

  • Amigoni, F., Banfi, J., & Basilico, N. (2017). Multirobot exploration of communication-restricted environments: A survey. IEEE Intelligent Systems, 32(6), 48–57.

    Article  Google Scholar 

  • Amigoni, F., Banfi, J., Basilico, N., Rekleitis, I., & Quattrini Li, A. (2018). Online update of communication maps for exploring multirobot systems under connectivity constraints. In Proceedings of the distributed autonomous robotic systems (DARS).

  • Bahl, P., & Padmanabhan, V. N. (2000), RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE international conference on computer communications (INFOCOM) (vol. 2, pp. 775–784).

  • Banfi, J., Quattrini Li, A., Basilico, N., Rekleitis, I, & Amigoni, F. (2016). Asynchronous multirobot exploration under recurrent connectivity constraints. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 5491–5498).

  • Banfi, J., Quattrini Li, A., Basilico, N., Rekleitis, I., & Amigoni, F. (2017). Multirobot online construction of communication maps. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2577–2583).

  • Best, G., Cliff, O., Patten, T., Mettu, R., & Fitch, R.(2018). Dec-MCTS: Decentralized planning for multi-robot active perception. The International Journal of Robotics Research To appear.

  • Carpin, S., Stoyanov, T., & Nevatia, Y. (2006). Quantitative assessments of USARSim accuracy. In Proceeeding of PerMIS.

  • Das, J., Py, F., Harvey, J. B. J., Ryan, J. P., Gellene, A., Graham, R., et al. (2015). Data-driven robotic sampling for marine ecosystem monitoring. The International Journal of Robotics Research, 34(12), 1435–1452.

    Article  Google Scholar 

  • Deisenroth, M., & Ng, J. (2015). Distributed gaussian processes. In Proceedings of the international conference on international conference on machine learning ICML (pp. 1481–1490).

  • Dunbabin, M., & Marques, L. (2012). Robots for environmental monitoring: Significant advancements and applications. IEEE Robotics Automation Magazine, 19(1), 24–39.

    Article  Google Scholar 

  • Ferris, B., Fox, D., Lawrence, N.D. (2007). WiFi-SLAM using Gaussian process latent variable models. In Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 2480–2485).

  • Fink, J., & Kumar, V. (2010). Online methods for radio signal mapping with mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1940–1945).

  • Fink, J., Ribeiro, A., & Kumar, V. (2013). Robust control of mobility and communications in autonomous robot teams. IEEE Access, 1, 290–309.

    Article  Google Scholar 

  • Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • GPy (2012) GPy: A Gaussian process framework in python. http://github.com/SheffieldML/GPy.

  • Gregory, J., Fink, J. R., Stump, E., Twigg, J. N., Rogers, J. G., Baran, D., Fung, N., & Young, S. (2015). Application of multi-robot systems to disaster-relief scenarios with limited communication. In Proceedings of the international conference on field and service robotics (FSR) (pp. 639–653).

  • Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with Rao–Blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46.

    Article  Google Scholar 

  • Hernandez, M., Li, H. B., Dotlić, I., & Miura, R. (2012). Reference channel models for proposals evaluation to TG8. In IEEE P802.15 working group for wireless personal area networks (WPANs) (pp. 1–20).

  • Heurtefeux, K., & Valois, F. (2012). Is RSSI a good choice for localization in wireless sensor network? In Proceedings of the IEEE international conference on advanced information networking and applications (pp. 732–739).

  • Hollinger, G. A., & Singh, S. (2012). Multirobot coordination with periodic connectivity: Theory and experiments. IEEE Transactions on Robotics, 28(4), 967–973.

    Article  Google Scholar 

  • Howard, A., & Roy, N. (2003). The robotics data set repository (Radish). http://radish.sourceforge.net/.

  • Hsieh, M. A., Cowley, A., Kumar, V., & Taylor, C. J. (2008). Maintaining network connectivity and performance in robot teams: Research articles. Journal of Field Robotics, 25(1–2), 111–131.

    Article  Google Scholar 

  • Im, H. J., Lee, C. E., & Cho, Y. J. (2014). Radio mapping scheme using collective intelligent robots for teleoperation in unstructured environments. In Proceedings of the IEEE international symposium on robot and human interactive communication (pp. 856–861).

  • Kemppainen, A., Haverinen, J., Vallivaara, I., & Rning, J. (2010). Near-optimal SLAM exploration in Gaussian processes. In IEEE conference on multisensor fusion and integration (pp. 7–13).

  • Ladd, A. M., Bekris, K. E., Rudys, A., Kavraki, L. E., & Wallach, D. S. (2005). Robotics-based location sensing using wireless ethernet. Wireless Networks, 11(1–2), 189–204.

    Article  Google Scholar 

  • Lilienthal, A., Zell, A., Wandel, M., & Weimar, U. (2001). Sensing odour sources in indoor environments without a constant airflow by a mobile robot. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (vol. 4, pp. 4005–4010).

  • Lindh, M., & Johansson, K. H. (2013). Exploiting multipath fading with a mobile robot. The International Journal of Robotics Research, 32(12), 1363–1380.

    Article  Google Scholar 

  • Liu, T., & Cerpa, A.E. (2011). Foresee (4C): Wireless link prediction using link features. In Proceedings of the conference on information processing in sensor networks IPSN (pp. 294–305).

  • Manjanna, S., Hansen, J., Quattrini Li, A., Rekleitis, I., & Dudek, G. (2017). Collaborative sampling using heterogeneous marine robots driven by visual cues. In Proceedings of the conference on computer and robot vision.

  • Manjanna, S., Quattrini Li, A., Smith, R., Rekleitis, I., & Dudek, G. (2018). Heterogeneous multi-robot system for exploration and strategic water sampling. In Proceedings of the IEEE international conference on robotics and automation (ICRA).

  • Marchant, R., Ramos, F., & Sanner, S. (2014). Sequential Bayesian optimisation for spatial-temporal monitoring. In Proceedings of the conference on uncertainty in artificial intelligence (UAI) (pp. 553–562).

  • Mirowski, P., Ho, T.K., & Whiting, P. (2014). Building optimal radio-frequency signal maps. In Proceedings of the international conference on pattern recognition (pp. 978–983).

  • Murphy, R. R., Tadokoro, S., & Kleiner, A. (2016). Disaster robotics. In Springer handbook of robotics (pp. 1577–1604).

  • Ochoa, S., & Santos, R. (2015). Human-centric wireless sensor networks to improve information availability during urban search and rescue activities. Information Fusion, 22, 71–84.

    Article  Google Scholar 

  • Penumarthi, P.K., Quattrini Li, A., Banfi, J., Basilico, N., Amigoni, F., O’Kane, J., Rekleitis, I., & Nelakuditi, S. (2017). Multirobot exploration for building communication maps with prior from communication models. In Proceedings of the international symposium on multirobot systems (MRS) (pp. 90–96).

  • Quattrini Li, A., Cipolleschi, R., Giusto, M., & Amigoni, F. (2016). A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings. Autonomous Robots, 40(4), 581–597.

    Article  Google Scholar 

  • Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (2009). ROS: An open-source robot operating system. In ICRA workshop on open source software.

  • Rappaport, T. S. (1996). Wireless communications: Principles and practice. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Rekleitis, I., New, A., Rankin, E., & Choset, H. (2008). Efficient boustrophedon multi-robot coverage: An algorithmic approach. Annals of Mathematics and Artificial Intelligence, 52(2), 109–142.

    Article  MathSciNet  Google Scholar 

  • Riva, A., Banfi, J., Fanton, C., Basilico, N.,&Amigoni, F. (2018). A journey among pairs of vertices: Computing robots’ paths for performing joint measurements. In Proceedings of the international conference on autonomous agents and multi-agent systems (AAMAS) (pp. 229–237).

  • Scholl, P. M., Kohlbrecher, S., Sachidananda, V., & Laerhoven, K. V. (2012). Fast indoor radio-map building for RSSI-based localization systems. In Proceedings of the international conference on networked sensing (INSS) (pp. 1–2).

  • Singh, A., Krause, A., Guestrin, C., & Kaiser, W. (2009). Efficient informative sensing using multiple robots. Journal of Artificial Intelligence Research, 34, 707–755.

    Article  MathSciNet  Google Scholar 

  • Spirin, V., de Hoog, J., Visser, A., & Cameron, S. (2014). MRESim, a multi-robot exploration simulator for the rescue simulation league. In Proceedings of the RoboCup (pp. 106–117).

  • Tuna, G., Gulez, K., & Gungor, V. C. (2013). The effects of exploration strategies and communication models on the performance of cooperative exploration. Ad Hoc Networks, 11(7), 1931–1941.

    Article  Google Scholar 

  • Twigg, J. N., Fink, J. R., Paul, L. Y., & Sadler, B. M. (2012). RSS gradient-assisted frontier exploration and radio source localization. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 889–895).

  • Vaughan, R. (2008). Massively multiple robot simulations in stage. Swarm Intelligence, 2(2–4), 189–208.

    Article  Google Scholar 

  • Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the international conference on autonomous agents (pp. 47–53).

  • Zlot, R., Stentz, A., Dias, M. B., & Thayer, S. (2002). Multi-robot exploration controlled by a market economy. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3016–3023).

  • Zvanovec, S., Pechac, P., & Klepal, M. (2003). Wireless LAN networks design: Site survey or propagation modeling? Radio Engineering, 12(4), 42–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Quattrini Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of the several papers published in Autonomous Robots comprising the Special Issue on Multi-Robot and Multi-Agent Systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quattrini Li, A., Penumarthi, P.K., Banfi, J. et al. Multi-robot online sensing strategies for the construction of communication maps. Auton Robot 44, 299–319 (2020). https://doi.org/10.1007/s10514-019-09862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09862-3

Keywords

Navigation