Skip to main content
Log in

A bionic autonomous navigation system by using polarization navigation sensor and stereo camera

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Inspired by the excellent navigational behavior of animals, this paper presents a bionic autonomous navigation (bio-navi) system by using a stereo camera and a polarization navigation sensor (POLNS). A topological graph consisting of nodes and edges forms the core of the system, which is similar to the simultaneous localization and mapping (SLAM). Like most of the SLAM approaches, in the bio-navi system, a node contains pose (position and attitude) and visual template information while an edge represents a constraint between two nodes. The difference is that the POLNS is introduced into the system. The yaw angle obtained from POLNS is attached to a node as a new property and also forms a new edge which restricts the direction of the related node. Besides, an absolute place constraint edge is added to the current node when recognizing a prior known place. To improve the accuracy and robustness of the place recognition, a POLNS-assist loop closure detection method is presented and to correct the pose error of constructed nodes, an improved graph optimization algorithm is derived in detail which is able to make full use of all the constraints. To demonstrate the performance of the system, an outdoor vehicle test has been done, and the results show its effectiveness and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baird, E., Boeddeker, N., Ibbotson, M. R., & Srinivasan, M. V. (2013). A universal strategy for visually guided landing. Proceedings of the National Academy of Sciences, 110(46), 18686–18691.

    Article  Google Scholar 

  • Boal, J., Sánchez-Miralles, A., & Arranz, A. (2014). Topological simultaneous localization and mapping: A survey. Robotica, 32(05), 803–821.

    Article  Google Scholar 

  • Chu, J., Zhao, K., Zhang, Q., & Wang, T. (2008). Construction and performance test of a novel polarization sensor for navigation. Sensors and Actuators A: Physical, 148(1), 75–82.

    Article  Google Scholar 

  • Cochran, W. W., Mouritsen, H., & Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science, 304(5669), 405–408.

    Article  Google Scholar 

  • Collett, T. S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14(12), R475–R477.

    Article  Google Scholar 

  • Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research, 27(6), 647–665.

    Article  Google Scholar 

  • Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

    Article  Google Scholar 

  • Denuelle, A., & Srinivasan, M. V. (2015). Snapshot-based navigation for the guidance of UAS. In Australasian Conference on Robotics and Automation (ACRA 2015).

  • Diebel, J. (2006). Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix, 58, 15–16.

    Google Scholar 

  • Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180–192.

    Article  Google Scholar 

  • Gagliardo, A. (2013). Forty years of olfactory navigation in birds. The Journal of experimental biology, 216(12), 2165–2171.

    Article  Google Scholar 

  • Garratt, M. A., & Chahl, J. S. (2008). Vision-based terrain following for an unmanned rotorcraft. Journal of Field Robotics, 25(4), 284.

    Article  Google Scholar 

  • Geiger, A., Ziegler, J., & Stiller, C. (2011). Stereoscan: Dense 3D reconstruction in real-time. In 2011 IEEE, Intelligent Vehicles Symposium (IV) (pp. 963–968). IEEE.

  • Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: From sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94–108.

    Article  Google Scholar 

  • Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43.

    Article  Google Scholar 

  • Kitt, B., Geiger, A., & Lategahn, H. (2010). Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In 2010 IEEE Intelligent Vehicles Symposium (IV) (pp. 486–492). IEEE.

  • Lambrinos, D., Kobayashi, H., Pfeifer, R., Maris, M., Labhart, T., & Wehner, R. (1997). An autonomous agent navigating with a polarized light compass. Adaptive Behavior, 6(1), 131–161.

    Article  Google Scholar 

  • Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., & Wehner, R. (2000). A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, 30(1), 39–64.

    Article  Google Scholar 

  • Lategahn, H., Geiger, A., & Kitt, B. (2011). Visual SLAM for autonomous ground vehicles. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1732–1737). IEEE.

  • Milford, M. J., & Wyeth, G. F. (2008). Mapping a suburb with a single camera using a biologically inspired SLAM system. IEEE Transactions on Robotics, 24(5), 1038–1053.

    Article  Google Scholar 

  • Muheim, R., Phillips, J. B., & Åkesson, S. (2006). Polarized light cues underlie compass calibration in migratory songbirds. Science, 313(5788), 837–839.

    Article  Google Scholar 

  • O’keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map (Vol. 3). Oxford: Clarendon Press.

    Google Scholar 

  • Olson, E., Leonard, J., & Teller, S. (2006). Fast iterative alignment of pose graphs with poor initial estimates. In ICRA 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation (pp. 2262–2269). IEEE.

  • Scaramuzza, D., & Fraundorfer, F. (2011). Visual odometry [tutorial]. IEEE Robotics & Automation Magazine, 18(4), 80–92.

    Article  Google Scholar 

  • Srinivasan, M. V., Chahl, J. S., Weber, K., Venkatesh, S., Nagle, M. G., & Zhang, S.-W. (1999). Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26(2), 203–216.

    Article  Google Scholar 

  • Wang, Y., Hu, X., Lian, J., Zhang, L., Xian, Z., & Ma, T. (2014). Design of a device for sky light polarization measurements. Sensors, 14(8), 14916–14931.

    Article  Google Scholar 

  • Xian, Z., Hu, X., Lian, J., Zhang, L., Cao, J., Wang, Y., et al. (2014). A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor. Sensors, 14(9), 17068–17088.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61503403, 61573371) and the National University of Defense Technology Advanced Research Programs (Nos. JC14-03-04, JC14-03-06). We thank Yujie Wang and Tao Ma for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, Z., He, X., Lian, J. et al. A bionic autonomous navigation system by using polarization navigation sensor and stereo camera. Auton Robot 41, 1107–1118 (2017). https://doi.org/10.1007/s10514-016-9596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9596-7

Keywords

Navigation