Abstract
This review presents the fundamentals of the particle acceleration processes active in interstellar medium (ISM), which are essentially based on the so-called Fermi mechanism theory. More specifically, the review presents here in more details the first order Fermi acceleration process—also known as diffusive shock acceleration (DSA) mechanism. In this case, acceleration is induced by the interstellar (IS) shock waves. These IS shocks are mainly associated with emission nebulae (H ii regions, planetary nebulae and supernova remnants). Among all types of emission nebulae, the strongest shocks are associated with supernova remnants (SNRs). Due to this fact they also provide the most efficient manner to accelerate ISM particles to become high energy particles, i.e. cosmic-rays (CRs). The review therefore focuses on the particle acceleration at the strong shock waves of supernova remnants.



References
Acero, F., Ackermann, M., Ajello, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bellazzini, R., Bissaldi, E., Blandford, R.D., et al.: The first Fermi LAT supernova remnant catalog. Astrophys. J. Suppl. 224, 8–58 (2016)
Allen, G.E., Houck, J.C., Sturner, S.J.: Evidence of a curved synchrotron spectrum in the supernova remnant SN 1006. Astrophys. J. 683, 773–785 (2008)
Amato, E., Blasi, P.: A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 364, L76–L80 (2005)
Arbutina, B.: Evolution of supernova remnants. Publ. Obs. Astron. Belgr. 97, 1–92 (2017)
Axford, W.I., Leer, E., Skadron, G.: The acceleration of cosmic-rays by shock waves. In: International Cosmic Ray Conference, vol. 11, pp. 132–137 (1977)
Bell, A.R.: The acceleration of cosmic-rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978a)
Bell, A.R.: The acceleration of cosmic-rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978b)
Bell, A.R.: Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic-rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)
Bell, A.R., Schure, K.M., Reville, B.: Cosmic ray acceleration at oblique shocks. Mon. Not. R. Astron. Soc. 418, 1208–1216 (2011)
Bell, A.R., Schure, K.M., Reville, B., Giacinti, G.: Cosmic-ray acceleration and escape from supernova remnants. Mon. Not. R. Astron. Soc. 431, 415–429 (2013)
Bell, A.R., Matthews, J.H., Blundell, K.M.: Cosmic ray acceleration by shocks: spectral steepening due to turbulent magnetic field amplification. Mon. Not. R. Astron. Soc. 488, 2466–2472 (2019)
Berezhko, E.G., Ellison, D.C.: A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526, 385–399 (1999)
Berezhko, E.G., Völk, H.J.: The theory of synchrotron emission from supernova remnants. Astron. Astrophys. 427, 525–536 (2004)
Blandford, R.D., Eichler, D.: Particle acceleration at astrophysical shocks: a theory of cosmic-ray origin. Phys. Rep. 154(1), 1–75 (1987)
Blandford, R.D., Ostriker, J.P.: Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978)
Blasi, P.: A novel approach to non linear shock acceleration. Nucl. Phys. B, Proc. Suppl. 110, 475–477 (2002a)
Blasi, P.: A semi-analytical approach to non-linear shock acceleration. Astropart. Phys. 16, 429–439 (2002b)
Blasi, P.: Nonlinear shock acceleration in the presence of seed particles. Astropart. Phys. 21, 45–57 (2004)
Blasi, P.: Shock acceleration of electrons in the presence of synchrotron losses—I. Test-particle theory. Mon. Not. R. Astron. Soc. 402, 2807–2816 (2010)
Blasi, P., Gabici, S., Vannoni, G.: On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 361, 907–918 (2005)
Blasi, P., Amato, E., Caprioli, D.: The maximum momentum of particles accelerated at cosmic-ray modified shocks. Mon. Not. R. Astron. Soc. 375, 1471–1478 (2007)
Caprioli, D.: Understanding hadronic gamma-ray emission from supernova remnants. J. Cosmol. Astropart. Phys. 5, 26 (2011)
Caprioli, D., Spitkovsky, A.: Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783, 91–107 (2014)
Caprioli, D., Blasi, P., Amato, E., Vietri, M.: Dynamical effects of self-generated magnetic fields in cosmic-ray-modified shocks. Astrophys. J. Lett. 679, L139–L142 (2008)
Caprioli, D., Blasi, P., Amato, E., Vietri, M.: Dynamical feedback of self-generated magnetic fields in cosmic-ray modified shocks. Mon. Not. R. Astron. Soc. 395, 895–906 (2009)
Caprioli, D., Amato, E., Blasi, P.: Non-linear diffusive shock acceleration with free-escape boundary. Astropart. Phys. 33, 307–311 (2010)
Caprioli, D., Pop, A., Spitkovsky, A.: Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798, L28 (2015)
Caprioli, D., Zhang, H., Spitkovsky, A.: Diffusive shock re-acceleration. J. Plasma Phys. 84, 715840301 (2018)
de Looze, I., Barlow, M.J., Swinyard, B.M., Rho, J., Gomez, H.L., Matsuura, M., Wesson, R.: The dust mass in Cassiopeia A from a spatially resolved Herschel analysis. Mon. Not. R. Astron. Soc. 465, 3309–3342 (2017)
Drury, L.OC.: An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973–1027 (1983)
Drury, L.O’C., Downes, T.P.: Turbulent magnetic field amplification driven by cosmic ray pressure gradients. Mon. Not. R. Astron. Soc. 427, 2308–2313 (2012)
Drury, L.O’C., Strong, A.W.: Cosmic-ray diffusive reacceleration: a critical look. In: The 34th International Cosmic Ray Conference (2015). arXiv:1508.02675v1
Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)
Ferrand, G.: Blasi’s semi-analytical kinetic model of non-linear diffusive shock acceleration (2010). Personal notes
Ferrand, G., Danos, R.J., Shalchi, A., Safi-Harb, S., Edmon, P., Mendygral, P.: Cosmic ray acceleration at perpendicular shocks in supernova remnants. Astrophys. J. 792, 133–145 (2014)
Gaggero, D., Zandanel, F., Cristofari, P., Gabici, S.: Time evolution of gamma rays from supernova remnants. Mon. Not. R. Astron. Soc. 475, 5237–5245 (2018)
Ginzburg, V.L., Syrovatskii, S.I.: Cosmic rays in the galaxy (introductory report). In: van Woerden, H. (ed.) Radio Astronomy and the Galactic System. IAU Symposium, vol. 31, p. 411 (1967)
Green, D.A.: A Catalogue of Galactic Supernova Remnants (2017 June Version). Cavendish Laboratory, Cambridge (2017). Available at http://www.mrao.cam.ac.uk/surveys/snrs/
Hussein, M., Shalchi, A.: Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory. Astrophys. J. 785, 31–37 (2014)
Inoue, T.: Bell-instability-mediated spectral modulation of hadronic gamma-rays from a supernova remnant interacting with a molecular cloud. Astrophys. J. 872, 46–54 (2019)
Jones, T.J., Rudnick, L., DeLaney, T., Bowden, J.: The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227–234 (2003)
Koyama, K., Petre, R., Gotthelf, E.V., Hwang, U., Matsuura, M., Ozaki, M., Holt, S.S.: Evidence for shock acceleration of high-energy electrons in the supernova remnant SN 1006. Nature 378, 255–258 (1995)
Krymsky, G.F.: A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306–1308 (1977)
Lequeux, J.: The Interstellar Medium, with the Collaboration of E Falgarone and C Ryter. Springer, Berlin (2005)
Longair, M.S.: High Energy Astrophysics. Volume 2. Stars, the Galaxy and the Interstellar Medium. Cambridge University Press, Cambridge (2011)
Malkov, M.A., Drury, LO’C: Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)
Onić, D.: On the supernova remnants with flat radio spectra. Astrophys. Space Sci. 346, 3–13 (2013)
Onić, D., Urošević, D.: On the continuum radio spectrum of Cas A: possible evidence of non-linear particle acceleration. Astrophys. J. 805, 119–125 (2015)
Ostrowski, M.: Supernova remnants in molecular clouds: on cosmic-ray electron spectra. Astron. Astrophys. 345, 256–258 (1999)
Parker, E.: The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965)
Pavlović, M.Z.: Hydrodynamical and radio evolution of young supernova remnant G1.9+0.3 based on the model of diffusive shock acceleration. Mon. Not. R. Astron. Soc. 468, 1616–1630 (2017)
Pavlović, M.Z.: Modeling the radio-evolution of supernova remnants by using hydrodynamic simulations and non-linear diffusive shock acceleration. PhD thesis, University of Belgrade (2018)
Pavlović, M.Z., Urošević, D., Arbutina, B., Orlando, S., Maxted, N., Filipović, M.: Radio evolution of supernova remnants including nonlinear particle acceleration: insights from hydrodynamic simulations. Astrophys. J. 858, 84 (2018)
Reber, G.: Cosmic static. Astrophys. J. 100, 279–287 (1944)
Reynolds, S.P.: Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)
Reynolds, S.P., Ellison, D.C.: Electron acceleration in Tycho’s and Kepler’s supernova remnants—spectral evidence of Fermi shock acceleration. Astrophys. J. 399, L75–L78 (1992)
Sano, H., Rowell, G., Reynoso, E.M., Jung-Richardt, J., Yamane, Y., Nagaya, T., Yoshiike, S., Hayashi, K., Torii, K., Maxted, N., Mitsuishi, I., Inoue, T., Inutsuka, S., Yamamoto, H., Tachihara, K., Fukui, Y.: Possible Evidence for cosmic-ray acceleration in the Type Ia supernova remnant RCW 86: spatial correlation between TeV gamma rays and interstellar atomic protons. Astrophys. J. 876, 37 (2019). https://arxiv.org/abs/1805.10647
Schlickeiser, R., Fürst, E.: The origin of flat radio spectra in shell-type supernova remnants. Astron. Astrophys. 219, 192–194 (1989)
Shalchi, A.: Diffusive shock acceleration in supernova remnants: on the validity of the Bohm limit. Astropart. Phys. 31, 237–242 (2009)
Shalchi, A., Skoda, T., Tautz, R.C., Schlickeiser, R.: Analytical description of nonlinear cosmic ray scattering: isotropic and quasilinear regimes of pitch-angle diffusion. Astron. Astrophys. 507, 589–597 (2009)
Skilling, J.: Cosmic rays in the Galaxy: convection or diffusion. Astrophys. J. 170, 265–273 (1971)
Skilling, J.: Cosmic ray streaming. I—Effect of Alfven waves on particles. Mon. Not. R. Astron. Soc. 172, 557–566 (1975)
Uchiyama, Y., Aharonian, F.A., Tanaka, T., Takahashi, T., Maeda, Y.: Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007)
Uchiyama, Y., Blandford, R.D., Funk, S., Tajima, H., Tanaka, T.: Gamma-ray emission from crushed clouds in supernova remnants. Astrophys. J. 723, L122–L126 (2010)
Urošević, D.: On the radio spectra of supernova remnants. Astrophys. Space Sci. 354, 541–552 (2014)
Vainio, R., Schlickeiser, R.: Self-consistent Alfven-wave transmission and test-particle acceleration at parallel shocks. Astron. Astrophys. 343, 303–311 (1999)
Vink, J.: Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012)
Vink, J., Bleeker, J., van der Heyden, K., Bykov, A., Bamba, A., Yamazak, R.: The X-ray synchrotron emission of RCW 86 and the implications for its age. Astrophys. J. 648, L33–L37 (2006)
Zeković, V.: Resonant micro-instabilities at quasi-parallel collisionless shocks: cause or consequence of shock (re)formation. Phys. Plasmas 26, 032106 (2019)
Acknowledgements
We thank the anonymous referee for useful comments and suggestions that greatly improved the quality of this paper. We acknowledge the financial support of the Ministry of Education, Science, and Technological Development of the Republic of Serbia through the project No. 176005 “Emission Nebulae: Structure and Evolution”. The authors thank Dragana Momic for careful reading and correction of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the Topical Collection: Plasma, Particles, and Photons: ISM Physics Revisited. Guest Editors: Manami Sasaki, Ralf-Jürgen Dettmar, Julia Tjus.
Rights and permissions
About this article
Cite this article
Urošević, D., Arbutina, B. & Onić, D. Particle acceleration in interstellar shocks. Astrophys Space Sci 364, 185 (2019). https://doi.org/10.1007/s10509-019-3669-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-019-3669-y