Skip to main content
Log in

Error propagation characteristic analysis of halo orbit based on condition number of state transition matrix

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The error propagation characteristics of different points of a halo orbit are studied in this paper. The condition number of state transition matrix after a period is used to estimate the sensitivity of different positions on a halo orbit to the state errors. Then the covariance propagation method is applied to compute the error covariance matrix under the initial state errors, and the results are validated by Monte Carlo simulation. The variations of the position error are compared with the variations of the condition number. The results show that the variation trend of the position error after a period of that halo orbit is the same as the variation trend of the condition number. Moreover, this identified property is verified by testing the halo orbits with different amplitudes and the halo orbits in systems with different mass ratios. Finally, the variation trends of the condition numbers against propagation time corresponding to different points on the halo orbit are analyzed. It is shown that the largest point in the negative \(z\) direction of the north halo orbit and its vicinity are more sensitive to state errors than other positions on the halo orbit, and they should not be selected as the injection point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Breakwell, J.V., Brown, J.V.: Celest. Mech. 20(4), 389 (1979)

    Article  ADS  Google Scholar 

  • Farquhar, R.W.: Station-keeping in the vicinity of collinear libration points with an application to a lunar communications problem. In: AAS Space Flight Mechanics Specialist Conference, Colorado, p. 519 (1966)

    Google Scholar 

  • Farquhar, R.W., Dunham, D.W., Guo, Y., McAdams, J.V.: Acta Astronaut. 55, 687 (2004)

    Article  ADS  Google Scholar 

  • Folta, D.C., Pavlak, T.A., Haapala, A.F., Howell, K.C., Woodard, M.A.: Acta Astronaut. 94, 421 (2014)

    Article  ADS  Google Scholar 

  • Geller, D.K.: J. Guid. Control Dyn. 29(6), 1404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghorbani, M., Assadian, N.: Adv. Space Res. 52, 2067 (2013)

    Article  ADS  Google Scholar 

  • Gómez, G., Howell, K.C., Masdemont, J., Sin, C.: Adv. Astronaut. Sci. 99(2), 949 (1998)

    Google Scholar 

  • Gómez, G., Masdemont, J., Mondelo, J.M.: Libration point orbits and applications. In: Proceedings of the Conference Aiguablava, Spain, p. 10 (2002)

    Google Scholar 

  • Grebow, D.J.: Generating Periodic Orbits in the Circular Restricted Three-Body Problem with Applications to Lunar South Pole Coverage. Dissertation, Purdue University (2006)

  • Gurfil, P., Meltzer, D.: J. Astronaut. Sci. 54(1), 29 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Howell, K.C.: Celest. Mech. 32(1), 53 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Howell, K.C., Breakwell, J.V.: Celest. Mech. 32(1), 29 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Howell, K.C., Pernicka, H.J.: J. Guid. Control Dyn. 16(1), 151 (1993)

    Article  ADS  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E.: Celest. Mech. Dyn. Astron. 81(1), 63 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, M.: Zheng, J Chin. J. Space Sci. 30(6), 540 (2010)

    Google Scholar 

  • Maybeck, P.S.: Stochastic Models, Estimation and Control. Academic Press, New York (1982)

    MATH  Google Scholar 

  • Moore, A., Sina, O.B., Marsden, J.E.: J. Guid. Control Dyn. 35(5), 1507 (2012)

    Article  ADS  Google Scholar 

  • Richardson, D.L.: Celest. Mech. 22(3), 241 (1980)

    Article  ADS  Google Scholar 

  • Serban, R., Koon, W.S., Lo, M.W., Marsden, J.E., Petzold, L.R., Ross, S.D., Wilson, R.S.: Automatica 38, 571 (2002)

    Article  MathSciNet  Google Scholar 

  • Simó, C., Gómez, G., Llibre, J., Martinez, R., Rodriguez, J.: Acta Astronaut. 15(6/7), 391 (1987)

    Article  ADS  Google Scholar 

  • Tang, G., Jiang, F.: Astrophys. Space Sci. 361, 10 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Wu, L., Liu, Z., Tang, C.: Sci. China Inf. Sci. 55, 1249 (2012)

    Article  MathSciNet  Google Scholar 

  • Zhang, S.Y.: Theory of Periodic and Quasi-Periodic Orbits Surrounding the Collinear Libration Points. Dissertation, PLA Information Engineering University (2009)

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (Grants No. 11402295) and the Science Project of the National University of Defense Technology (No. JC14-01-05). The authors acknowledge the support of Xiyun Hou for helping prove that the eigenvalues of the monodromy matrices of different positions are the same.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, J. Error propagation characteristic analysis of halo orbit based on condition number of state transition matrix. Astrophys Space Sci 361, 297 (2016). https://doi.org/10.1007/s10509-016-2856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2856-3

Keywords

Navigation