Skip to main content

Advertisement

Log in

A review of the role of probiotics for the control of viral diseases in aquaculture

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The advancement of technology, globalization of trade, massive demand, and cost-effective practices has fuelled the fast expansion of the aquaculture industry in recent time. Viral infections, on the contrary, limit aquaculture production, affecting the global economic progression and prosperity. Disease managements accomplished through conventional methods, synthetic chemicals, or antibiotics were found to have detrimental effects on the environment. Again, the incidents of viral infection may become epizootics if fish healthcare professionals may not have an effective hazard management mechanism in place. The chief approach to preventing viral epidemics is to stop the infection from spreading. Under such circumstances, the probiotics appear as the most promising approach to the prevention of viral infections and pathogenicity. Bacterial probiotics like Pediococcus acidilactici, Pseudomonas sp., Vibrio sp., Bacillus sp., Aeromonas sp., Pseudoalteromonas sp., Alteromonas sp., Lactobacillus casei, Lactococcus lactis, and Lactobacillus plantarum, and algal paraprobiotics (ghost probiotic) like Nannochloropsis gaditana are found to be effective in controlling viral pathogens allied with aquaculture. The study revealed the conventional strategies available in aquaculture against viruses. The study also provides a conception of probiotics, their mode of application, and approaching standpoints related to the remediation of viral diseases in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

BMGNV:

Baculoviral Midgut Gland Necrosis Virus

CCV:

Channel Catfish Virus

EHNV:

Epizootic Haematopoietic Necrosis Virus

IHNV:

Infectious Hematopoietic Necrosis Virus

IPNV:

Infectious Pancreatic Necrosis Virus

ISAV:

Infectious Salmon Anemia Virus

KHV:

Koi Herpesvirus

LCDV:

Lymphocystis Disease Virus

MBV:

Monodon Baculovirus

OMV:

Oncorhynchus Masou Virus

RSIV:

Red sea Bream Iridovirus

PDV:

Salmon Pancreas Disease Virus

SVCV:

Spring Viraemia of Carp Virus

TSV:

Taura Syndrome Virus

VHSV:

Viral Haemorrhagic Septicaemia Virus

VNNV:

Viral Nervous Necrosis Virus

WDSV:

Walleye Dermal Sarcoma Virus

WSSV:

White Spot Syndrome Virus

YHV:

Yellow Head Virus

TiLV:

Tilapia Lake Virus

References

  • Aamelfot M, McBeath A, Christiansen DH, Matejusova I, Falk K (2015) Infectious salmon anaemia virus (ISAV) mucosal infection in Atlantic salmon. Vet Res 46:1–11

    Google Scholar 

  • Abid A, Davies SJ, Waines P, Emery M, Castex M, Gioacchini G, Carnevali O, Bickerdike R, Romero J, Merrifield DL (2013) Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol 35:1948–1956

    CAS  PubMed  Google Scholar 

  • Ahne W, Bjorklund H, Essbauer S, Fijan N, Kurath G, Winton J (2002) Spring viremia of carp (SVC). Dis Aquat Org 52:261–272

    CAS  Google Scholar 

  • Araujo C, Munoz-Atienza E, Nahuelquin Y, Poeta P, Igrejas G, Hernandez PE, Herranz C, Cintas LM (2015) Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Anaerobe 32:7–14

    PubMed  Google Scholar 

  • Arnemo M, Kavaliauskis A, Gjøen T (2014) Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar). Dev Comp Immunol 46:139–145

    CAS  PubMed  Google Scholar 

  • Bachrach U (2007) Antiviral activity of oxidized polyamines. Amino Acids 33:267–272

    CAS  PubMed  Google Scholar 

  • Bahari A, Afsharnasab M, Motalbei Moghanjoghi A, Azaritakami G, Shrifrohani M (2015) Experimental pathogenicity of shrimp, Penaeus vannamei exposed to monodon baculovirus (MBV). Iran J Fish Sci 14:350–357

    Google Scholar 

  • Bootland LM, Leong JC (1999) Infectious hematopoietic necrosis virus. Fish Dis Disord 3:57–121

    Google Scholar 

  • Borrego JJ, Valverde EJ, Labella AM, Castro D (2015) Lymphocystis disease virus: its importance in aquaculture. Rev Aquac 9:179–193

    Google Scholar 

  • Chai PC, Song XL, Chen GF, Xu H, Huang J (2016) Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of Fenneropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Fish Shellfish Immunol 54:602–611

    CAS  PubMed  Google Scholar 

  • Chang CI, Liu WY (2002) An evaluation of two probiotic bacterial strains, Enterococcus faecium SF68 and Bacillus toyoi, for reducing Edwardsiellosis in cultured European eel, Anguilla anguilla L. J Fish Dis 25:311–315

    Google Scholar 

  • Chang P, Lo C, Wang Y, Kou G (1996) Identification of white spot syndrome associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Dis Aquat Org 27:131–139

    Google Scholar 

  • Chantanachookin C, Boonyaratpalin S, Kasornchandra J, Direkbusarakom S, Ekpanithanpong U, Supamataya K, Sriurairatana S, Flegel TW (1993) Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow-head disease. Dis Aquat Org 17:145–157

    Google Scholar 

  • Chinchar VG, Hyatt A, Miyazaki T, Williams T (2009) Family Iridoviridae: poor viral relations no longer. In: Van Etten JL (eds) Lesser Known Large dsDNA Viruses. Curr Top Microbiol Immunol 328: 123–170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68618-7_4

  • Cordero H, Esteban MA, Cuesta A (2014) Use of probiotic bacteria against bacterial and viral infections in shellfish and fish aquaculture. INTECH Open Sci 8:239–265

    Google Scholar 

  • Covello JM, Bird S, Morrison RN, Battaglene SC, Secombes CJ, Nowak BF (2009) Cloning and expression analysis of three striped trumpeter (Latris lineata) pro-inflammatory cytokines, TNF-α, IL-1β and IL-8, in response to infection by the ectoparasitic, Chondracanthus Goldsmidi. Fish Shellfish Immunol 26(5):773–786

    CAS  PubMed  Google Scholar 

  • Cui LC, Guan XT, Liu ZM, Tian CY, Xu YG (2015) Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): a promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine 33:3092–3099

    CAS  PubMed  Google Scholar 

  • Desvignes L, Quentel C, Lamour F, Le Ven A (2002) Pathogenesis and immune response in Atlantic salmon (Salmo salar L.) parr experimentally infected with salmon pancreas disease virus (SPDV). Fish Shellfish Immunol 12:77–95. https://doi.org/10.1006/fsim.2001.0356

    Article  CAS  PubMed  Google Scholar 

  • Direkbusarakom S, Yoshimizu M, Ezura Y, Ruangpan L, Danayadol Y (1998) Vibrio spp., the dominant flora in shrimp hatchery against some fish pathogenic viruses. J Mar Biotechnol 6:266–267

    CAS  PubMed  Google Scholar 

  • Escobar LE, Escobar-Dodero J, Phelps NBD (2018) Infectious disease in fish: global risk of viral hemorrhagic septicemia virus. Rev Fish Biol Fish 28:637–655. https://doi.org/10.1007/s11160-018-9524-3

    Article  Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina, 1–4 October 2001. https://www.fao.org/3/a0512e/a0512e.pdf. Accessed 12th March, 2022

  • Ganguly A, Banerjee A, Mandal A, Mohapatra PKD (2018) Probiotic-based cultivation of Clarias batrachus: importance and future perspective. Acta Biol Szeged 62:158–168

    Google Scholar 

  • Ganguly A, Banerjee A, Mandal A, Khan MA, Mohapatra PKD (2019a) Isolation and characterization of bacteria from the intestine of Clarias batrachus for probiotic organism. In Proc Zool Soc 72:411-419

  • Ganguly A, Banerjee A, Mandal A, Mohapatra PKD (2019b) Study of bile salt hydrolase in Lysinibacillus sphaericus: a potent fish probiotic and its in silico structure prediction for catalytic interaction. Roum Arch Microbiol Immunol 78:81–90

    CAS  Google Scholar 

  • Gatesoupe FJ (1994) Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus against pathogenic Vibrio. Aquat Living Resour 7:277–282

    Google Scholar 

  • Geovanny DGR, Balcázar JL, Ma S (2007) Probiotics as control agents in aquaculture. J Ocean Univ China 6:76–79. https://doi.org/10.1007/s11802-007-0076-8

    Article  Google Scholar 

  • Hamon E, Horvatovich P, Marchioni E, Aoude-Werner D, Ennahar S (2014) Investigation of potential markers of acid resistance in Lactobacillus plantarum by comparative proteomics. J Appl Microbiol 116:134–144

    CAS  PubMed  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo MS (2010a) Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish Shellfish Immunol 29:868–874

    PubMed  Google Scholar 

  • Harikrishnan R, Jin CN, Kim MC, Kim JS, Balasundaram C, Heo MS (2010b) Effectiveness and immunomodulation of chemotherapeutants against scuticociliate Philasterides dicentrarchi in olive flounder. Exp Parasitol 124:306–314

    CAS  PubMed  Google Scholar 

  • Hasson KW, Lightner DV, Poulos BT, Redman RM, White BL, Brock JA et al (1995) Taura syndrome in Penaeus vannamei: demonstration of a viral etiology. Dis Aquat Organ 23:115–126

    Google Scholar 

  • He S, Zhang Y, Xu L, Yang Y, Marubashi T, Zhou Z (2013) Effects of dietary Bacillus subtilis C-3102 on the production, intestinal cytokine expression and autochthonous bacteria of hybrid tilapia Oreochromis niloticus X Oreochromis aureus. Aquaculture 412:125–130

    Google Scholar 

  • Hedrick RP, Gilad O, Yun S, Spangenberg JV, Marty GD, Nordhausen RW et al (2000) A herpesvirus associated with mass mortality of juvenile and adult koi, a strain of common carp. J Aquat Anim Health 12:44–57

    CAS  PubMed  Google Scholar 

  • Wang XW, Wang JX (2013) Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol 34(4):981–989

    PubMed  Google Scholar 

  • Hill BJ, Berthe F, Lightner DV, Sais RE (2013) Methods for disinfection of aquaculture establishments. In: Manual of Diagnostic Tests for Aquatic Animals, pp 28–39

  • Ito T, Yoshiura Y, Kamaishi T, Yoshida K, Nakajima K (2013) Prevalence of red sea bream iridovirus among organs of Japanese amberjack (Seriola quinqueradiata) exposed to cultured red sea bream iridovirus. J Gen Virol 94:2094–2101

    CAS  PubMed  Google Scholar 

  • Jain J, Kumar A, Narayanan V, Ramaswamy RS, Sathiyarajeswaran P, Devi MS et al (2020) Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation. J Ayurveda Integr Med 11:329–335

    PubMed  Google Scholar 

  • Jansen MD, Dong HT, Mohan CV (2019) Tilapia lake virus: a threat to the global tilapia industry? Rev Aquac 11(3):725–739

    Google Scholar 

  • Jaramillo-Torres A, Rawling MD, Rodiles A, Mikalsen HE, Johansen LH, Tinsley J et al (2019) Influence of Dietary Supplementation of Probiotic Pediococcus acidilactici MA18/5M during the transition from freshwater to seawater on intestinal health and microbiota of Atlantic Salmon (Salmo salar L.). Front Microbiol 10:2243. https://doi.org/10.3389/fmicb.2019.02243

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia S, Zhou K, Pan R, Wei J, Liu Z, Xu Y (2020) Oral immunization of carps with chitosan–alginate microcapsule containing probiotic expressing spring viremia of carp virus (SVCV) G protein provides effective protection against SVCV infection. Fish Shellfish Immunol 105:327–329. https://doi.org/10.1016/j.fsi.2020.07.052

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Gong QY, Lai SS, Cheng ZX, Chen ZG, Zheng J et al (2019) Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio. Fish Shellfish Immunol 84:912–919

    CAS  PubMed  Google Scholar 

  • Jorgensen JB, Johansen LH, Steiro K, Johansen A (2003) CpG DNA induces protective antiviral immune responses in Atlantic salmon (Salmo salar L.). J Virol 77:11471–11479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1988) Screening of bacteria with antiviral activity from fresh water Salmonid hatcheries. Microbiol Immunol 32:67–73. https://doi.org/10.1111/j.1348-0421.1988.tb01366.x

    Article  CAS  PubMed  Google Scholar 

  • Kibenge FS (2019) Emerging viruses in aquaculture. Curr Opin Virol 34:97–103

    PubMed  Google Scholar 

  • Kim D, Beck BR, Heo SB, Kim J, Kim HD, Lee SM et al (2013) Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies. Fish Shellfish Immunol 35:1585–1590

    CAS  PubMed  Google Scholar 

  • Kim JH, Gomez DK, Choresca CH, Park SC (2007) Detection of major bacterial and viral pathogens in trash fish used to feed cultured flounder in Korea. Aquaculture 272:105–110

    Google Scholar 

  • Kimura T, Yoshimizu M, Ezura Y, Kamei Y (1990) An antiviral agent (46NW-04A) produced by Pseudomonas sp. and its activity against fish viruses. J Aquat Anim Health 2:12–20

    Google Scholar 

  • Kimura T, Yoshimizu M, Tanaka M, Sannohe H (1981) Studies on a New Virus (OMV) from Oncorhynchus masou-I. Fish Pathol 15:143–147. https://doi.org/10.3147/jsfp.15.143

    Article  Google Scholar 

  • Kitamura SI, Ko JY, Lee WL, Kim SR, Song JY, Kim DK et al (2007) Seasonal prevalence of lymphocystis disease virus and aquabirna virus in Japanese flounder, Paralichthys olivaceus and blue mussel, Mytilus galloprovincialis. Aquaculture 266:26–31

    Google Scholar 

  • Korkea-aho TL, Papadopoulou A, Heikkinen J, von Wright A, Adams A, Austin B et al (2012) Pseudomonas M162 confers protection against rainbow trout fry syndrome by stimulating immunity. J Appl Microbiol 113:24–35

    CAS  PubMed  Google Scholar 

  • Kyung CS, Ryun KS, Kwon NY, Koo KS, Hong KK (2006) Organ distribution of red sea bream iridovirus (RSIV) DNA in asymptomatic yearling and fingerling rock bream (Oplegnathus fasciatus) and effects of water temperature on transition of RSIV into acute phase. Aquaculture 256:23–26

    Google Scholar 

  • Lakshmi B, Viswanath B, SaiGopal DVR (2013) Probiotics as antiviral agents in shrimp aquaculture. J Pathog 2013:424123. https://doi.org/10.1155/2013/424123

    Article  PubMed  PubMed Central  Google Scholar 

  • Langdon JS (1989) Experimental transmission and pathogenicity of epizootic haematopoietic necrosis virus (EHNV) in Redfin perch, Perca fluviatilis L., and 11 other teleosts. J Fish Dis 12:295–310

    Google Scholar 

  • LaPatra SE, Fehringer TR, Cain KD (2014) A probiotic Enterobacter sp. provides significant protection against Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) after injection by two different routes. Aquaculture 433:361–366

    Google Scholar 

  • LaPatra SE, Parsons JE, Jones GR, McRoberts WO (1993) Early life stage survival and susceptibility of brook trout, coho salmon, rainbow trout, and their reciprocal hybrids to infectious hematopoietic necrosis virus. J Aquat Anim Health 5:270–274

    Google Scholar 

  • Li J, Tan B, Mai K (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291:35–40

    CAS  Google Scholar 

  • Li Y, Liu H, Dai X, Li J, Ding F (2018) Effects of dietary inulin and mannan oligosaccharide on immune related genes expression and disease resistance of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 76:78–92

    CAS  PubMed  Google Scholar 

  • Lieleg O, Lieleg C, Bloom J, Buck CB, Ribbeck K (2012) Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules 13(6):1724–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE (2002) Immunity induced shortly after DNA vaccination of rainbow trout against Rhabdoviruses protects against heterologous virus but not against bacterial pathogens. Dev Comp Immunol 26:173–179

    CAS  PubMed  Google Scholar 

  • McDonnell G (2009) The use of hydrogen peroxide for disinfection and sterilization applications. In PATAI’S Chemistry of Functional Groups, Wiley, New York, pp 1–34

  • McLoughlin MF, Graham DH (2007) Alpha virus infections in salmonids (a review). J Fish Dis 30:511–531

    CAS  PubMed  Google Scholar 

  • McLoughlin MF, Nelson RT, Rowley HM, Cox DI, Grant AN (1996) Experimental pancreas disease in Atlantic salmon Salmo salar post-smolts induced by salmon pancreas disease virus (SPDV). Dis Aquat Org 26:117–124

    Google Scholar 

  • McNab F, Mayer-Barber K, Sher A, Wack A, O’garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103. https://doi.org/10.1038/nri3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikalsen AB, Teig A, Helleman AL, Mjaaland S, Rimstad E (2001) Detection of infectious salmon anaemia virus (ISAV) by RT-PCR after cohabitant exposure in Atlantic salmon Salmo salar. Dis Aquat Organ 47:175–181

    CAS  PubMed  Google Scholar 

  • Mladineo I, Bušelić I, Hrabar J, Radonić I, Vrbatović A, Jozić S et al (2016) Autochthonous bacterial isolates successfully stimulate in vitro peripheral blood leukocytes of the European sea bass (Dicentrarchus labrax). Front Microbiol 7:1244

    PubMed  PubMed Central  Google Scholar 

  • Mohamed S, Nagaraj G, Chua FHC, Wang YG (2000) The use of chemicals in aquaculture in Malaysia and Singapore. In: Use of Chemicals in Aquaculture in Asia: Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia 20–22 May 1996. Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, pp 127–140

  • Mohapatra S, Chakraborty T, Prusty AK, Das P, Prasad PK, Mohanta KN (2012) Use of different microbial probiotics in the diet of rohu (Labeo rohita) fingerlings: effect on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac Nutr 18:1–11

    CAS  Google Scholar 

  • Monteiro M, Lavrador AS, Santos R, Rangel F, Iglesias P, Tárraga M et al (2021) Evaluation of the potential of marine algae extracts as a source of functional ingredients using zebrafish as animal model for aquaculture. Mar Biotechnol 23:529–545. https://doi.org/10.1007/s10126-021-10044-5

    Article  CAS  Google Scholar 

  • Monteiro M, Santos RA, Iglesias P, Couto A, Serra CR, Gouvinhas I et al (2020) Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro- and microalgae extracts. J Appl Phycol 32:349–362

    CAS  Google Scholar 

  • Munang’andu HM, Mutoloki S, Evensen Ø (2015) A review of the immunological mechanisms following mucosal vaccination of finfish. Front Immunol 6:427

    PubMed  PubMed Central  Google Scholar 

  • Munang’andu HM, Mutoloki S, Evensen Ø (2016) Prevention and control of viral diseases in aquaculture. Aquac Virol:77–93.https://doi.org/10.1016/b978-0-12-801573-5.00005-x

  • Munday BL, Kwang J, Moody N (2002) Betanodavirus infections of teleost fish: a review. J Fish Dis 25:127–142

    Google Scholar 

  • Murray AG (2016) A modelling framework for assessing the risk of emerging diseases associated with the use of cleaner fish to control parasitic sea lice on salmon farms. Transbound Emerg Dis 63:e270–e277

    CAS  PubMed  Google Scholar 

  • Myouga H, Yoshimizu M, Tajima K, Ezura Y (1995) Purification of an antiviral substance produced by Alteromonas sp. and its virucidal activity against fish viruses. Fish Pathol 30:15–22

    CAS  Google Scholar 

  • Naderi-Samani M, Soltani M, Dadar M, Taheri-Mirghaed A, Zargar A, Ahmadivand S et al (2020) Oral immunization of trout fry with recombinant Lactococcus lactis NZ3900 expressing G gene of viral hemorrhagic septicaemia virus (VHSV). Fish Shellfish Immunol 105:62–70

    CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    CAS  PubMed  Google Scholar 

  • Neukirch M (1985) Uptake, multiplication and excretion of viral haemorrhagic septicaemia virus in rainbow trout (Salmo gairdneri). Fish Shellfish Pathol, Ellis AE (ed), Academic Press, London, 295–300

  • Nishizawa T, Iida H, Takano R, Isshiki T, Nakajima K, Muroga K (2002) Genetic relatedness among Japanese, American and European isolates of viral hemorrhagic septicemia virus (VHSV) based on partial G and P genes. Dis Aquat Org 48:143–148

    CAS  Google Scholar 

  • Nishizawa T, Takami I, Yang M, Oh MJ (2011) Live vaccine of viral hemorrhagic septicemia virus (VHSV) for Japanese flounder at fish rearing temperature of 21°C instead of Poly(I:C) administration. Vaccine 29:8397–8404

    CAS  PubMed  Google Scholar 

  • Nusbaum KE, Grizzle JM (1987) Uptake of channel catfish virus from water by channel catfish and bluegills. Am J Vet Res 48:375–377

    CAS  PubMed  Google Scholar 

  • Otta SK, Karunasagar I, Karunasagar I (2003) Detection of monodon baculovirus and white spot syndrome virus in apparently healthy Penaeus monodon postlarvae from India by polymerase chain reaction. Aquaculture 220:59–67

    Google Scholar 

  • Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:1–28

    Google Scholar 

  • Picchietti S, Fausto AM, Randelli E, Carnevali O, Taddei AR, Buonocore F (2009) Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol 26:368–376

    CAS  PubMed  Google Scholar 

  • Picchietti S, Mazzini M, Taddei AR, Renna R, Fausto AM, Mulero V (2007) Effects of administration of probiotic strains on GALT of larval gilthead sea bream: immunohistochemical and ultrastructural studies. Fish Shellfish Immunol 22:57–67

    CAS  PubMed  Google Scholar 

  • Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N (2011) Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91:e92–e97

    CAS  PubMed  Google Scholar 

  • Plumb JA (1989) Channel Catfish Herpesvirus. Viruses Lower Vertebrates 198:216. https://doi.org/10.1007/978-3-642-83727-2_18

    Article  Google Scholar 

  • Plumb JA (1992) Disease control in aquaculture. In: Shariff M, Subasinghe RP, Arthur JR (eds) Diseases in Asian Aquaculture I. Fish Health Section, Asian Fisheries Society, Manila, pp 3–17

    Google Scholar 

  • Pradeep B, Rai P, Mohan SA, Shekhar MS, Karunasagar I (2012) Biology, host range, pathogenesis and diagnosis of white spot syndrome virus. Indian J Virol 23:161–174

    PubMed  PubMed Central  Google Scholar 

  • Quackenbush S (2016) Retroviruses of Fish. In: Aquaculture Virology, Academic Press, United States, pp 193–204

  • Ramirez RF, Dixon BA (2003) Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture 227:417–426

    CAS  Google Scholar 

  • Rimstad E (2011) Examples of emerging virus diseases in salmonid aquaculture. Aquac Res 42:86–89. https://doi.org/10.1111/j.1365-2109.2010.02670.x

    Article  Google Scholar 

  • Robertsen B (2018) The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. Dev Comp Immunol 80:41–52

    CAS  PubMed  Google Scholar 

  • Rodriguez MF, Wiens GD, Purcell MK, Palti Y (2005) Characterization of toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics 57:510–519. https://doi.org/10.1007/s00251-005-0013-1

    Article  CAS  PubMed  Google Scholar 

  • Rovnak J, Quackenbush SL (2010) Walleye dermal sarcoma virus: molecular biology and oncogenesis. Viruses 2:1984–1999. https://doi.org/10.3390/v2091984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sano M, Ito T, Kurita J, Yanai T, Watanabe N, Miwa S et al (2004) First detection of koi herpesvirus in cultured common carp Cyprinus carpio in Japan. Fish Pathol 39:165–167

    Google Scholar 

  • Sano T, Nishimura T, Oguma K, Momoyama K, Takeno N (1981) Baculovirus infection of cultured Kuruma shrimp, Penaeus japonicus in Japan. Fish Pathol 15:185–191

    Google Scholar 

  • Shefat SHT (2018) Vaccines for use in finfish aquaculture. Acta Sci Pharm Sci 2:19

    Google Scholar 

  • Singh IB, Yadava YS (2005) Aquaculture medicine and aquatic animal health management. Aquaculture Authority, Tamil Nadu

    Google Scholar 

  • Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101

    CAS  PubMed  Google Scholar 

  • Swanson RN, Carlisle JC, Gillespie JH (1982) Pathogenesis of infectious pancreatic necrosis virus infection in brook trout, Salvelinus fontinalis (Mitchill), following intraperitoneal injection. J Fish Dis 5:449–460

    Google Scholar 

  • Thammasorn T, Jitrakorn S, Charoonnart P, Sirimanakul S, Rattanarojpong T, Chaturongakul S et al (2017) Probiotic bacteria (Lactobacillus plantarum) expressing specific double-stranded RNA and its potential for controlling shrimp viral and bacterial diseases. Aquac Int 25:1679–1692

    CAS  Google Scholar 

  • van Staden AD, van Zyl WF, Trindade M, Dicks LM, Smith C (2021) Therapeutic application of lantibiotics and other lanthipeptides: old and new findings. Appl Environ Microbiol 87(14):e00186-e221

    PubMed Central  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner RR (1996) Rhabdoviridae: the viruses and their replication. Virology 1:1121–1135

    Google Scholar 

  • Waiyamitra P, Zoral MA, Saengtienchai A, Luengnaruemitchai A, Decamp O, Gorgoglione B, Surachetpong W (2020) Probiotics modulate tilapia resistance and immune response against Tilapia Lake Virus infection. Pathogens 9(11):919

    CAS  PubMed Central  Google Scholar 

  • Walker PJ, Sittidilokratna N (2008) Yellow head virus. Encyclopedia of virology. Academic Press, United States, pp 476–483

  • Walker PJ, Winton JR (2010) Emerging viral diseases of fish and shrimp. Vet Res 41:51

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Lin X, Ma G, Bai X (2007) Emerging viral diseases of fish and shrimp. In: Emerging Viral Diseases of Southeast Asia. 4th edn. Karger Publishers, Basel, pp 35–58

  • Yamazaki T (1974) Infectious pancreatic necrosis of rainbow trout. Fish Cult 11:36–40

    Google Scholar 

  • Yoshimizu M, Tanaka M, Kimura T (1987) Oncorhynchus masou virus (OMV): incidence of tumor development among experimentally infected representative salmonid species. Fish Pathol 22:7–10

    Google Scholar 

  • Yu CI, Song YL (2000) Outbreaks of Taura syndrome in Pacific white shrimp Penaeus vannamei cultured in Taiwan. Fish Pathol 35:21–24

    Google Scholar 

  • Zhan WB, Wang YH, Fryer JL, Yu KK, Fukuda H, Meng QX (1998) White spot syndrome virus infection of cultured shrimp in China. J Aquat Anim Health 10:405–410

    Google Scholar 

  • Zhang Y, Zhang Q, Xu D, Hu C, Gui J (2003) Identification of antiviral-relevant genes in the cultured fish cells induced by UV-inactivated virus. Chin Sci Bull 48(6):581–588

    CAS  Google Scholar 

  • Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17:882

    PubMed  PubMed Central  Google Scholar 

  • Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K et al (2016) Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36:228–241

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Initial information collection and design of the manuscript were done by Sourav Chattaraj. Correction and preparation of initial manuscript were done by Arindam Ganguly. Asish Mandal prepared the draft manuscript. Conceptualization and final draft preparation were done by Pradeep K. Das Mohapatra. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Pradeep K. Das Mohapatra.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Brian Austin

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattaraj, S., Ganguly, A., Mandal, A. et al. A review of the role of probiotics for the control of viral diseases in aquaculture. Aquacult Int 30, 2513–2539 (2022). https://doi.org/10.1007/s10499-022-00915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-022-00915-6

Keywords

Navigation