Skip to main content

Advertisement

Log in

Spatial and Seasonal Variation in Surface Water pCO2 in the Ganges, Brahmaputra, and Meghna Rivers on the Indian Subcontinent

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Recent studies have remarked on the importance of direct CO2 release from river water into the atmosphere on the global carbon cycle over a short timescale. In this study, we investigated carbonate systems, including spatial and seasonal variations of pCO2, in three major Himalayan rivers in Bangladesh: the Ganges, Brahmaputra, and Meghna Rivers, and their potential importance. Although pCO2 is known to be low in the upper reaches of these rivers, owing to active chemical weathering, we observed pCO2 values higher than the atmospheric pCO2 level along their lower reaches, where deep soils have developed and where high air temperatures promote active soil respiration. By a simple mixing calculation, we found that seasonal variations in these river water carbonate systems are controlled by subsurface water flows. In the rainy season, most of the lowlands are inundated, and the contribution of subsurface flow to river water carbonate systems increases, resulting in higher pCO2 values. In future research, more detailed spatial and seasonal investigations are required to clarify the role of terrestrial ecosystems, including rivers and the CO2 flux to the atmosphere, in the global carbon cycle and to examine how that role will change under global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitkenhead JA, McDowell WH (2000) Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cycles 14:127–138. doi:10.1029/1999GB900083

    Article  Google Scholar 

  • Alin SR, de FFL Rasera M, Salimon CI et al (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res 116:G01009. doi:10.1029/2010JG001398

    Google Scholar 

  • Araoka D, Kawahata H, Takagi T et al (2014) Lithium and strontium isotopic systematics in playas in Nevada, USA: constraints on the origin of lithium. Miner Depos 49:371–379. doi:10.1007/s00126-013-0495-y

    Article  Google Scholar 

  • Aucour A, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159:87–105. doi:10.1016/S0009-2541(99)00035-2

    Article  Google Scholar 

  • Aucour A-M, France-Lanord C, Pedoja K et al (2006) Fluxes and sources of particulate organic carbon in the Ganga–Brahmaputra river system. Global Biogeochem Cycles 20:GB2006. doi:10.1029/2004GB002324

    Article  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA et al (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60. doi:10.1890/100014

    Article  Google Scholar 

  • Bickle MJ, Bunbury J, Chapman HJ et al (2003) Fluxes of Sr into the headwaters of the Ganges. Geochim Cosmochim Acta 67:2567–2584. doi:10.1016/S0016-7037(03)00029-2

    Article  Google Scholar 

  • Buhl D, Neuser RD, Richter DK et al (1991) Nature and nurture: environmental isotope story of the River Rhine. Naturwissenschaften 78:337–346. doi:10.1007/BF01131605

    Article  Google Scholar 

  • Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842. doi:10.1038/ngeo1294

    Article  Google Scholar 

  • Catling HD, Hobbs PR, Islam Z, Alam B (1983) Agronomic practices and yield assessments of deepwater rice in Bangladesh. Field Crop Res 6:109–132. doi:10.1016/0378-4290(83)90052-7

    Article  Google Scholar 

  • Chatterjee J, Singh SK (2012) 87Sr/86Sr and major ion composition of rainwater of Ahmadabad, India: sources of base cations. Atmos Environ 63:60–67. doi:10.1016/j.atmosenv.2012.08.060

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110. doi:10.1071/MF00084

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi:10.1007/s10021-006-9013-8

    Article  Google Scholar 

  • Depetris PJ, Kempe S (1993) Carbon dynamics and sources in the Paraná River. Limnol Oceanogr 38:382–395

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, IOCCP Report No. 8, North Pacific Marine Science Organization

  • Dubois KD, Lee D, Veizer J (2010) Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. J Geophys Res 115:G02018. doi:10.1029/2009JG001102

    Google Scholar 

  • Evans MJ, Derry LA, France-Lanord C (2004) Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochem Geophys Geosyst 5:Q08011. doi:10.1029/2004GC000719

    Article  Google Scholar 

  • Evans MJ, Derry LA, France-Lanord C (2008) Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem Geophys Geosyst 9:Q04021. doi:10.1029/2007GC001796

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30. doi:10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31–60. doi:10.1016/S0009-2541(99)00033-9

    Article  Google Scholar 

  • Hartmann J (2009) Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago—application of a multi-lithological model framework. Chem Geol 265:237–271. doi:10.1016/j.chemgeo.2009.03.024

    Article  Google Scholar 

  • Hélie J-F, Hillaire-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River—isotopic and chemical constraint. Chem Geol 186:117–138. doi:10.1016/S0009-2541(01)00417-X

    Article  Google Scholar 

  • Heroy DC, Kuehl SA, Goodbred SL Jr (2003) Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change. Sediment Geol 155:343–359. doi:10.1016/S0037-0738(02)00186-0

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages. Hydrol Process 18:3255–3275. doi:10.1002/hyp.5657

    Article  Google Scholar 

  • Huang X, Sillanpää M, Gjessing ET et al (2011) Water quality in the southern Tibetan Plateau: chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Res Appl 27:113–121. doi:10.1002/rra.1332

    Article  Google Scholar 

  • Huizing HGJ (1971) A reconnaissance study of the mineralogy of sand fractions from East Pakistan sediments and soils. Geoderma 6:109–133. doi:10.1016/0016-7061(71)90029-2

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Article  Google Scholar 

  • Islam KR, Weil RR (2000) Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric Ecosyst Environ 79:9–16. doi:10.1016/S0167-8809(99)00145-0

    Article  Google Scholar 

  • Jonsson A, Åberg J, Jansson M (2007) Variations in pCO2 during summer in the surface water of an unproductive lake in northern Sweden. Tellus 59:797–803. doi:10.1111/j.1600-0889.2007.00307.x

    Article  Google Scholar 

  • Karim A, Veizer J (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem Geol 170:153–177. doi:10.1016/S0009-2541(99)00246-6

    Article  Google Scholar 

  • Kawahata H, Yukino I, Suzuki A (2000) Terrestrial influences on the Shiraho fringing reef, Ishigaki Island, Japan: high carbon input relative to phosphate. Coral Reefs 19:172–178. doi:10.1007/s003380000093

    Article  Google Scholar 

  • Kempe S (1982) Long-term records of CO2 pressure fluctuations in fresh waters. In: Degens ET (ed) Transp. carbon Miner. major world rivers, part 1. Geologisch-Paläontologisches Institut Universität Hamburg, Hamburg, pp 91–332

    Google Scholar 

  • Kuehl SA, Allison MA, Goodbred SL, Kudrass H (2005) The Ganges-Brahmaputra Delta. SEPM Spec Publ No. 83, pp 413–434

  • Lakshminarayana JSS (1965) Studies on phytoplankton of the River Ganges, Varanasi, India Part I “The physico-chemical characteristics of River Ganges”. Hydrobiologia 25:119. doi:10.1007/BF00189858

    Article  Google Scholar 

  • Lal M, Harasawa H (2001) Future climate change scenarios for Asia as inferred from selected coupled atmosphere-ocean global climate models. J Meteorol Soc Japan Ser II 79:219–227

    Article  Google Scholar 

  • Larsen IJ, Almond PC, Eger A et al (2014) Rapid soil production and weathering in the Southern Alps, New Zealand. Science 343:637–640. doi:10.1126/science.1244908

    Article  Google Scholar 

  • Manaka T, Ushie H, Araoka D et al (2013) Rapid alkalization in Lake Inawashiro, Fukushima, Japan: implications for future changes in the carbonate system of terrestrial waters. Aquat Geochem 19:281–302. doi:10.1007/s10498-013-9195-6

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428. doi:10.2475/ajs.287.5.401

    Article  Google Scholar 

  • Meybeck M, Ragu A (2012) GEMS-GLORI world river discharge database. doi: 10.1594/PANGAEA.804574

  • Millero FJ (1979) The thermodynamics of the carbonate system in seawater. Geochim Cosmochim Acta 43:1651–1661. doi:10.1016/0016-7037(79)90184-4

    Article  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21

    Article  Google Scholar 

  • Milliman JD, Rutkowski C, Meybeck M (1995) River discharge to the sea: a global river index (GLORI). Texel, NIOZ

    Google Scholar 

  • Mirza MMQ (2002) Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Glob Environ Chang 12:127–138. doi:10.1016/S0959-3780(02)00002-X

    Article  Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys 31:357–396. doi:10.1029/93RG02030

    Article  Google Scholar 

  • Nagahora S, Mikami H, Ishikawa Y, Igarashi S, Fujita T, Murata K, Sakata K (2002) Characterization of dissolved fulvic acid extracted from the stream water in the Kushiro Bog (in Japanese). J Jpn Soc Water Environ 25:229–233. doi:10.2965/jswe.25.229

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2013) NNDC Climate Data Online. http://www7.ncdc.noaa.gov/CDO/cdo. Accessed 12 Sep 2013

  • Nishio Y, Okamura K, Tanimizu M et al (2010) Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: implications for deep-seated fluids and earthquake swarms. Earth Planet Sci Lett 297:567–576. doi:10.1016/j.epsl.2010.07.008

    Article  Google Scholar 

  • Palmer MR, Edmond JM (1992) Controls over the strontium isotope composition of river water. Geochim Cosmochim Acta 56:2099–2111. doi:10.1016/0016-7037(92)90332-D

    Article  Google Scholar 

  • Parua PK (2010) The Ganga: Water Use in the Indian Subcontinent. Springer, Water Science and Technology Library

    Google Scholar 

  • Paul M, Reisberg L, Vigier N et al (2010) Dissolved osmium in Bengal plain groundwater: implications for the marine Os budget. Geochim Cosmochim Acta 74:3432–3448. doi:10.1016/j.gca.2010.02.034

    Article  Google Scholar 

  • Rai SK, Singh SK, Krishnaswami S (2010) Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Geochim Cosmochim Acta 74:2340–2355. doi:10.1016/j.gca.2010.01.008

    Article  Google Scholar 

  • Raymahashay BC (1970) Characteristics of stream erosion in the Himalayan region of India. In: Proc. Symp. Hydrogeochem. Biogeochem. vol 1—hydrogeochemistry. The Clarke Company, pp 82–92

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi:10.1038/nature12760

    Article  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607. doi:10.1038/ngeo1830

    Article  Google Scholar 

  • Rengarajan R, Singh SK, Sarin MM, Krishnaswami S (2009) Strontium isotopes and major ion chemistry in the Chambal River system, India: implications to silicate erosion rates of the Ganga. Chem Geol 260:87–101. doi:10.1016/j.chemgeo.2008.12.013

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK et al (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620. doi:10.1038/416617a

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562. doi:10.1016/j.epsl.2004.05.019

    Article  Google Scholar 

  • River Survey Project (1996) Spatial representation and analysis of hydraulic and morphologic data: water resources planning organization. Dhaka flood plan coordination organization, River Survey Study Rep. 5, Water Resour. Planning Project, Gov. of Bangladesh, Dhaka

  • Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Mac OS X, and iOS (iPhone). U.S. Geological Survey Open-File Report 2010–1280

  • Robinson RAJ, Brezina CA, Parrish RR et al (2014) Large rivers and orogens: the evolution of the Yarlung Tsangpo-Irrawaddy system and the eastern Himalayan syntaxis. Gondwana Res 26:112–121. doi:10.1016/j.gr.2013.07.002

    Article  Google Scholar 

  • Sarin MM, Krishnaswami S, Dilli K et al (1989) Major ion chemistry of the Ganga–Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009. doi:10.1016/0016-7037(89)90205-6

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean Biogeochemical Dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Senga Y, Hiroki M, Nakamura Y et al (2010) Vertical profiles of DIN, DOC, and microbial activities in the wetland soil of Kushiro Mire, northeastern Japan. Limnology 12:17–23. doi:10.1007/s10201-010-0316-2

    Article  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125. doi:10.1038/365119a0

    Article  Google Scholar 

  • Singh SK, Sarin MM, France-Lanord C (2005) Chemical erosion in the eastern Himalaya: major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon. Geochim Cosmochim Acta 69:3573–3588. doi:10.1016/j.gca.2005.02.033

    Article  Google Scholar 

  • Stewart RJ, Hallet B, Zeitler PK et al (2008) Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology 36:711–714. doi:10.1130/G24890A.1

    Article  Google Scholar 

  • Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sediment Geol 99:259–280. doi:10.1016/0037-0738(95)00048-D

    Article  Google Scholar 

  • Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86. doi:10.1016/S0009-2541(99)00034-0

    Article  Google Scholar 

  • Terai H, Ohta K, Shidara S et al (2002) CH4-, N2O- and H2- fluxes and microbial processes in Kushiro Wetland. Annu Rep Res Inst Biol Funct 2:7–15

    Google Scholar 

  • Tripathy GR, Goswami V, Singh SK, Chakrapani GJ (2010) Temporal variations in Sr and 87Sr/86Sr of the Ganga headwaters: estimates of dissolved Sr flux to the mainstream. Hydrol Process 24:1159–1171. doi:10.1002/hyp.7572

    Article  Google Scholar 

  • Tripathy G, Singh S, Krishnaswami S (2012) Sr and Nd isotopes as tracers of chemical and physical erosion. In: Baskaran M (ed) Handbook of environmental isotope geochemistry SE-26. Springer, Berlin, pp 521–552

    Chapter  Google Scholar 

  • Turner RE, Rabalais NN, Justic D, Dortch Q (2003) Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64:297–317. doi:10.1023/A:1024960007569

    Article  Google Scholar 

  • Ushie H, Kawahata H, Suzuki A et al (2010) Enhanced riverine carbon flux from carbonate catchment to the ocean: a comparative hydrogeochemical study on Ishigaki and Iriomote islands, southwestern Japan. J Geophys Res 115:G02017. doi:10.1029/2009JG001039

    Google Scholar 

  • Wang ZA, Bienvenu DJ, Mann PJ et al (2013) Inorganic carbon speciation and fluxes in the Congo River. Geophys Res Lett 40:511–516. doi:10.1002/grl.50160

    Article  Google Scholar 

  • Webster PJ, Jian J, Hopson TM et al (2010) Extended-range probabilistic forecasts of Ganges and Brahmaputra floods in Bangladesh. Bull Am Meteorol Soc 91:1493–1514. doi:10.1175/2010BAMS2911.1

    Article  Google Scholar 

  • Yao G, Gao Q, Wang Z et al (2007) Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci Total Environ 376:255–266. doi:10.1016/j.scitotenv.2007.01.080

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280. doi:10.1146/annurev.earth.28.1.211

    Article  Google Scholar 

  • Zhai W, Dai M, Guo X (2007) Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Mar Chem 107:342–356. doi:10.1016/j.marchem.2007.02.011

    Article  Google Scholar 

Download references

Acknowledgments

We express our appreciation to Dr. Hiroshi Ogawa, Ms. Yoko Fujimoto, Ms. Megumi Shinozuka (the University of Tokyo), and Dr. Masaya Yasuhara (AIST) for their support in analyses. We also thank Dr. Toshihiro Yoshimura (Japan Agency for Marine-Earth Science and Technology), Mr. Kengo Higashi and Mr. Daisaku Ishikawa (the University of Tokyo), Mr. Md. Nahid Nowsher, Mr. Sabbir Ahamed, and Mr. Mostafa Tarek (JUST) for their support in our sampling surveys. Dr. Harue Masuda (Osaka City University) provided constructive comments and advice. This study was partly supported by JSPS Grants-in-Aid for Scientific Research (S) to H. Kawahata (22224009) and Research Fellowships to T. Manaka, H. Ushie, and D. Araoka, and by a Sasagawa Scientific Research Grant to T. Manaka and H. Ushie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Manaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manaka, T., Ushie, H., Araoka, D. et al. Spatial and Seasonal Variation in Surface Water pCO2 in the Ganges, Brahmaputra, and Meghna Rivers on the Indian Subcontinent. Aquat Geochem 21, 437–458 (2015). https://doi.org/10.1007/s10498-015-9262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-015-9262-2

Keywords

Navigation