Skip to main content
Log in

Release of Arsenic from Volcanic Rocks through Interactions with Inorganic Anions and Organic Ligands

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The effects of a number of inorganic anions (F, HCO3 , B(OH) 4 , Cl, I) and of the siderophore DFO-B on the release of As from volcanic rocks were investigated in batch experiments. While previously reported field and laboratory data support a role of inorganic anions on As mobilization into aquifers, the role of siderophores on As-induced mobilization was less investigated. Fluoride, bicarbonate and DFO-B have shown a significant influence on the release of As from the rocks. Lava was mostly affected among the investigated rocks at pH 6 and 20°C by releasing 4% of its initial As content in the presence of 0.01 M Fand 10% in the presence of 500 μM DFO-B. The effect of fluoride was larger at pH 6 than at pH 8.5 for all the rocks. In the case of DFO-B, there was also a larger effect at pH 6 compared to pH 8 for the various rocks except tuff. Bicarbonate played a role under alkaline conditions while its effect was negligible at pH 6. Anion exchange processes in the presence of fluoride and bicarbonate and complexation processes in the presence of the siderophore DFO-B appear to be the major processes responsible for the release of arsenic from the rocks. The siderophore DFO-B plays mainly an indirect role on the As release by complexing Al, Fe and Mn, thus favoring the dissolution of the rocks and the consequent release of As bound to surface Al, Fe and Mn oxy-hydroxides. These findings suggest that ionic interactions with fluoride, bicarbonate and siderophore may be a further triggering factor in the mobilization of As from aquifer rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aiuppa A, Avino R, Brusca L, Caliro S, Chiodini G, D’Alessandro W, Favara R, Federico C, Ginevra W, Inguaggiato S, Longo M, Pecoraino G, Valenza M (2006) Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem Geol 229:313–330

    Article  Google Scholar 

  • Amirbahman A, Kent DB, Curtis GP, Davis JA (2006) Kinetics of sorption and abiotic oxidation of arsenic (III) by aquifer materials. Geochim Cosmochim Acta 70:533–547

    Article  Google Scholar 

  • Anawar HM, Akai J, Sakugawa H (2004) Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54:753–762

    Article  Google Scholar 

  • Arnorsson S (2003) Arsenic in surface- and up to 90°C ground waters in a basalt area, N-Iceland: processe controlling its mobility. Applied Geochem 18:1297–1312

    Article  Google Scholar 

  • Aurilio AC, Mason RP, Hemond HF (1994) Speciation and fate of arsenic in three lakes of the Aberjona Watershed. Environ Sci Technol 28:577–585

    Article  Google Scholar 

  • Borer PM, Sulzberger B, Reichard P, Kraemer SM (2005) Effect of sidereophores on the light-induced dissolution of colloidal iron (III) (hydr)oxides. Mar Chem 93(2–4):179–193

    Article  Google Scholar 

  • Busbee MW, Kocar BD, Benner SG (2009) Irrigation produces elevated arsenic in the underlying groundwater of a semi-arid basin in Southwestern Idaho. Appl Geochem 24:843–859

    Article  Google Scholar 

  • Cervini-Silva J, Sposito G (2002) Steady-state dissolution kinetics of aluminum-goethite in the presence of desferrioxamine-B and oxalate ligands. Environ Sci Technol 36(3):337–342

    Article  Google Scholar 

  • Cheah S-F, Kraemer SM, Cervini-Silva J, Sposito G (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem Geol 198(1–2):63–75

    Article  Google Scholar 

  • Cocozza C, Tsao C, Cheah S-F, Kraemer SM, Raymond KN, Miano TM, Sposito G (2002) Temperature dependence of goethite dissolution promoted by trihydroxamate siderophores. Geochim Cosmochim Acta 66:431–438

    Article  Google Scholar 

  • Cornell RM, Schwartmann U (1996) The iron oxides. VCH Publishers Inc., New York

    Google Scholar 

  • Cumming DE, Caccavo F Jr, Fendorf S, Rosenzweig FR (1999) Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:725–729

    Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189

    Article  Google Scholar 

  • Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A (2008) Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 156:1069–1074

    Article  Google Scholar 

  • Dubbin WE, Ander EL (2003) Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH. Appl Geochem 18:1751–1756

    Article  Google Scholar 

  • Duckworth OW, Sposito G (2005) Siderophore-manganese (III) interactions. II Manganite dissolution promoted by Desferrioxamine B. Environ Sci Technol 39:6045–6051

    Article  Google Scholar 

  • Farooqi A, Masuda H, Kusakabe M, Naseem M, Firdous N (2007) Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem J 41:213–234

    Google Scholar 

  • Ferguson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6:1259–1274

    Article  Google Scholar 

  • Foley NK, Ayuso RA (2008) Mineral sources and transport pathways for arsenic release in a coastal watershed, USA. Geochem Explor Environ Anal 8(1):59–75

    Article  Google Scholar 

  • García-Sánchez A, Moyano A, Mayorga P (2005) High arsenic contents in groundwater of central Spain. Environ Geol 47:847–854

    Article  Google Scholar 

  • Gaskova O, Azaronal M, Piantone P, Lassin A (2001) Arsenic behaviour in subsurface hydrogeochemical systems: a critical review of thermodynamic data for arsenic minerals and aqueous species: a compilation of arsenic surface complexation reactions. Report RP—51356 FR. BRGM, Orléans

    Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clays minerals. Soil Sci Soc Am J 66:413–421

    Google Scholar 

  • Gomez ML, Blarasin MT, Martínez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155

    Article  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606

    Article  Google Scholar 

  • Hepinstal JE, Turner BF, Maurice PA (2005) Effects of siderophores on Pb and Cd adsorption to kaolinite. Clays Clay Min 53:557–563

    Article  Google Scholar 

  • Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim Cosmohim Acta 59:3327–3330

    Article  Google Scholar 

  • Holmén BA, Casey WH (1996) Hydroxamate ligands, surface chemistry, and the mechanism of ligand promoted dissolution of goethite [-FeOOH(s)]. Geochim Cosmochim Acta 60:4403–4416 Ibid 62, 726

    Article  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from delta sediments. Nature 430:68–71

    Article  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  Google Scholar 

  • Kalinowski BE, Liermann LJ, Brantley SL, Barnes A, Pantano CG (2000) X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim Cosmochim Acta 64:1331–1343

    Article  Google Scholar 

  • Kim MJ, Nriagu J, Haack S (2000) Carbonate ions and arsenic dissolution by groundwater. Environ Sci Technol 34:3094–3100

    Article  Google Scholar 

  • Kinniburg DG, Kosmus W (2002) Arsenic contamination in groundwater: some analytical considerations. Talanta 58:165–180

    Article  Google Scholar 

  • Korte NE, Fernando Q (1991) A review of arsenic (III) in groundwater. Critic Rev Environ Control 21:1–39

    Article  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  Google Scholar 

  • Kraemer SM, Cheah S-F, Zapf R, Xu J, Raymond KN, Sposito G (1999) Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochim Cosmochim Acta 63:3003–3008

    Article  Google Scholar 

  • Kraemer SM, Xu J, Raymond KN, Sposito G (2002) Adsorption of Pb(II) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores. Environ Sci Technol 36:1287–1291

    Article  Google Scholar 

  • Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136

    Article  Google Scholar 

  • Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602

    Article  Google Scholar 

  • Locardi E (1965) Tipi di ignimbrite e magmi mediterranei: le ignimbriti del volcano di Vico [Some kinds of ignimbrite amd Mediterranean magmas: the Vico volcano ignimbrites]. Atti Società Toscana Scienze Naturali (series A) XXII:235–260

    Google Scholar 

  • Lundström US, van Breemen N, Bain D (2000) The podzolisation process. A review. Geoderma 94:91–107

    Article  Google Scholar 

  • Madhavan N, Subramanian V (2007) Environmental impact assessment, remediation and evolution of fluoride and arsenic contamination process in groundwater. In: Thangarajan M (ed) Groundwater, Chap. 6. Springer, Berlin

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of arsenic (III) at the clay mineral—water interface. Environ Sci Technol 31:2005–2011

    Article  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere: a review. Sci Tot Envirton 249:297–312

    Article  Google Scholar 

  • McCreadie H, Blowes DW, Ptacek CJ, Jambor JL (2000) Influence of reduction reactions and solid-phase composition on porewater concentrations of arsenic. Environ Sci Technol 34:3159–3166

    Article  Google Scholar 

  • Meng X, Korfiatis GP, Bang S, Bang W (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    Article  Google Scholar 

  • Millero FJ, Hershey JP, Fernandez M (1987) The pK* of TRISH+ in Na-K-Mg-Ca-Cl-SO4 brines-pH scales. Geochim Cosmochim Acta 51:707–711

    Article  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180(1):199–212

    Article  Google Scholar 

  • Neubauer U, Furrer G (1999) The use of voltammetry for sorption studies of heavy metals on mineral surface in presence of the siderophore desferrioxamine B. Anal Chim Acta 392(2–3):159–173

    Article  Google Scholar 

  • Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755

    Article  Google Scholar 

  • Neubauer U, Furrer G, Schulin R (2002) Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) hydroxides and dissolved Fe(III). Eur J Soil Sci 53:45–55

    Article  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Nickson RT, McArthur JMB, Shrestha B, Kyaw-Myint TO, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl Geochem 20:55–68

    Article  Google Scholar 

  • Nicolli HB, Suriano JM, Gomez Peral MA, Ferpozzi LH, Baleani OH (1989) Groundwater contamination with arsenic and other trace-elements in an area of the Pampa province of Córdoba, Argentina. Environ Geol Water Sci 14:3–16

    Article  Google Scholar 

  • Nicolli HB, Tineo A, Garcia JW, Falcon CM, Merino MH (2001) Trace-element quality problems in groundwater from Tucuman, Argentina. Water-Rock Interaction 2:993–996 Cidu ed

    Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70(16):4116–4129

    Article  Google Scholar 

  • Peña J, Duckworth OW, Bargar JR, Sposito G (2007) Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim Cosmochim Acta 71:5661–5671

    Article  Google Scholar 

  • Peterson ML, Carpenter R (1983) Biogeochemical processes affecting total arsenic and arsenic species distributions in an intermittently anoxic fjiord. Mar Chem 12:295–321

    Article  Google Scholar 

  • Pettine M, Camusso M, Martinotti W (1992) Dissolved and particulate transport of arsenic and chromoium in the Po River (Italy). Sci Tot Environ 119:253–280

    Article  Google Scholar 

  • Pettine M, Mastroianni D, Camusso M, Guzzi L, Martinotti W (1997) Distribution of As, Cr and V species in the Po-Adriatic mixing area (Italy). Mar Chem 58:335–349

    Article  Google Scholar 

  • Pettine M, Casentini B, Mastroianni D, Capri S (2007) Dissolved inorganic carbon effect in the determination of arsenic and chromium in mineral waters by inductively coupled plasma-mass spectrometry. Anal Chim Acta 599:191–198

    Article  Google Scholar 

  • Pichler T, Veizer J, Hall GEM (1999) Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environ Sci Technol 33:1373–1378

    Article  Google Scholar 

  • Radloff KA, Cheng Z, Rahman MW, Ahmed KM, Mailloux BJ, Juhl AR, Schlosser P, vanGeen A (2007) Mobilization of arsenic during one-year incubations of grey aquifer sands from Araihazar, Bangladesh. Environ Sci Technol 41(10):3639–3645

    Article  Google Scholar 

  • Radu T, Subacz JL, Phillippi JM (2005) Effects of dissolved carbonate on arsenic adsorption and mobility. Environ Sci Technol 39:7875–7882

    Article  Google Scholar 

  • Reichard PU, Kraemer SM, Frazier SW, Kretzschmar R (2005) Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276(1):115–132

    Article  Google Scholar 

  • Reichard PU, Kretzschmar R, Kraemer SM (2007a) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71(23):5635–5650

    Article  Google Scholar 

  • Reichard PU, Kretzschmar R, Kraemer SM (2007b) Rate laws of steady-state and non-steady-state ligand-controlled dissolution of goethite. Colloids Surf A Physicochem Eng Asp 306(1–3):22–28

    Article  Google Scholar 

  • Rosenberg DR, Maurice PA (2003) Siderophore adsorption to and dissolution of kaolinite at pH 3 to 7 at 22°C. Geochim Cosmochim Acta 67:223–229

    Article  Google Scholar 

  • Roychowdhury T, Basu GK, Mandal BK, Biswas BK, Samanta G, Chwodhury UK, Chanda CR, Lodh D, Roy SL, Saha KC, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (1999) Arsenic poisoning in the Ganges delta. Nature 410:545–546

    Google Scholar 

  • Rozalen M, Huertas FJ, Brady PV (2009) Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution. Geochim Cosmochim Acta 73:3752–3766

    Article  Google Scholar 

  • Saeki K (2008) Adsorption sequence of toxic inorganic anions on a soil. Bull Environ Contamin Toxicol 81:508–512

    Article  Google Scholar 

  • Sexena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736

    Google Scholar 

  • Sigfusson B, Meharg AA, Gislason SR (2008) Regulation of Arsenic mobility on basaltic glass surfaces by speciation and pH. Environ Sci Technol 42(23):8816–8821

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  Google Scholar 

  • Tang Y, Guan X, Su T, Gao N, Wang J (2009) Fluoride adsorption onto activated alumina: modeling the effects of pH and some competing ions. Colloids Surf A Physicochem Eng Asp 337:33–38

    Article  Google Scholar 

  • Tao Y, Zhang S, Jian W, Yuan C, Shan X-q (2006) Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat. Chemosphere 65:1281–1287

    Article  Google Scholar 

  • Vivona R, Preziosi E, Madé B, Giuliano G (2007) Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeol J 15:1183–1196

    Article  Google Scholar 

  • Wagman DD, Evans WH, Parker WB, Schumn RH, Harlow I, Bailey SM, Churney KL, Butall RL (1982) The NBs tables of chemical thermodynamic properties. Selected values for inorganic and organic substances in SI units. J Phys Chem Ref Data 11:S2

    Google Scholar 

  • Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28:197–214

    Article  Google Scholar 

  • Warren C, Burgess WG, Garcia MG (2005) Hydrochemical association and depth profiles of arsenic and fluoride in Quaternary loess aquifers of northern Argentina. Mineral Mag 69(5):877–886

    Article  Google Scholar 

  • Watteau F, Berthelin J (1994) Microbial dissolution of iron and aluminum from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Env J Soil Biol 30:1–9

    Google Scholar 

  • Williams E, Barnett MO, Kramer TA, Melville JG (2003) Adsorption and transport of arsenic (V) in experimental subsurface systems. J Environ Qual 32:841–850

    Article  Google Scholar 

  • Zhang S, Li W, Quan SX, Lu A, Zhou P (2005) Effect of low molecular weight organic anions on the release of arsenite and arsenate from a contaminated soil. Water Air Soil Pollut 167:111–122

    Article  Google Scholar 

  • Zhu W, Young LY, Yee N, Serfes M, Rhine ED, Reinfelder JR (2008) Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochim Cosmochim Acta 72:5243–5250

    Article  Google Scholar 

  • Zhu M, Paul KW, Kubicki JD, Sparks DL (2009) Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic (III) oxidation. Environ Sci Technol 43(17):6655–6661

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Daniel Moraeitis from Technical University of Crete (Chania, Greece) for XRD analysis and Marcello Serracino from IGAG-CNR (Rome, Italy) for WDS electron microprobe analysis. Frank J. Millero wishes to acknowledge the support of the Oceanographic Section of the National Science Foundation and the National Oceanic and Atmospheric Administration for support of his physical chemical studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Pettine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casentini, B., Pettine, M. & Millero, F.J. Release of Arsenic from Volcanic Rocks through Interactions with Inorganic Anions and Organic Ligands. Aquat Geochem 16, 373–393 (2010). https://doi.org/10.1007/s10498-010-9090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-010-9090-3

Keywords

Navigation