Skip to main content
Log in

Toward an Understanding of Biogenic-silica Dissolution in Seawater – An Initial Rate Approach Applied between 40 and 90 °C

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Summary

The kinetics of phytoplankton frustule dissolution has generally been studied as the appearance of silicic acid in a batch reactor. Unfortunately, this approach, though often illuminating, has not so far been successful because of the difficulty of parameterising the full reaction curve. This current study shows how the initial rate approach to chemical kinetics offers a way around this bottleneck, thereby allowing much chemical kinetics information about frustule dissolution to be collected. The technique is shown to be flexible and suited to short reaction times which facilitate detailed quantitative kinetics investigation, indeed, as would be expected in a solution phase, kinetics study. The technique is exemplified by a dissolution study of uncleaned frustules of Cyclotella crypticaat 40 °C and above. The frustules were found to yield the same dissolution rate after 5 weeks dark storage, at 4 °C. Meanwhile, log dissolution rate was found to vary linearly with pH, with gradient 0.38 ± 0.01 (r 2=0.990). Linearity was upheld even at pHs as high as 14. Finally, a robust Arrhenius plot was established between 40 and 90 °C yielding an activation energy for dissolution of 84 ± 3 kJ mol −1. Follow through with the Eyring equation yielded an activation enthalpy, ΔH , and an activation entropy, ΔS , of 81 and 85 J mol −1K −1, respectively. The discussion brings salient aspects of existing knowledge about diatom frustule dissolution kinetics into the wider context of silicate mineral dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • P. W. Atkins (1998) Physical Chemistry University Press Oxford

    Google Scholar 

  • J. D. Atwood (1985) Inorganic and Organometallic Reaction Mechanisms Brookes/Cole Publishing Company Monterey, CA

    Google Scholar 

  • K. D. Bidle F. Azam (1999) ArticleTitleAccelerated dissolution of diatom silica by marine bacterial assemblages Nature 397 508–512 Occurrence Handle000078574900045

    ISI  Google Scholar 

  • A. E. Blum A. C. Lasaga (1988) ArticleTitleRole of surface speciation in the low-temperature dissolution of minerals Nature 4 431–433

    Google Scholar 

  • A. E. Blum A. C. Lasaga (1991) ArticleTitleRole of surface speciation in the dissolution of albite Geochim. Cosmochim. Acta 55 2193–2201 Occurrence Handle10.1016/0016-7037(91)90096-N

    Article  Google Scholar 

  • P. V. Brady J. V. Walther (1989) ArticleTitleControls on silicate dissolution rates in neutral and basic pH solutions at 25 °C Geochim. Cosmochim. Acta 53 53 2823–2830

    Google Scholar 

  • P. V. Brady J. V. Walther (1990) ArticleTitleKinetics of quartz dissolution at low temperatures Chem. Geol. 82 253–264 Occurrence Handle10.1016/0009-2541(90)90084-K

    Article  Google Scholar 

  • W. S. Broecker T. H. Peng (1982) Tracers in the Sea Lamont-Doherty Geological Observatory Publ. New York

    Google Scholar 

  • J. F. Bunnett (1974a) From kinetic data to reaction mechanism E. S. Lewis (Eds) Techniques of Chemistry Vol VI: Investigation of Rates and Mechanisms of Reactions (Part 1) Wiley-Interscience New York 367–488

    Google Scholar 

  • J. F. Bunnett (1974b) Kinetics in solution E. S. Lewis (Eds) Techniques of Chemistry Vol VI: Investigation of Rates and Mechanisms of Reactions (Part 1) Wiley-Interscience New York 129–210

    Google Scholar 

  • S. Carroll E. Mroczek M. Alai M. Ebert (1998) ArticleTitleAmorphous silica precipitation (60–120 °C): Comparison of laboratory and field rates Geochim. Cosmochim. Acta 62 IssueID8 1379–1396 Occurrence Handle10.1016/S0016-7037(98)00052-0

    Article  Google Scholar 

  • S. A. Carroll J. V. Walther (1990) ArticleTitleKaolinite dissolution at 25 °C, 60 °C and 80 °C Amer. J. Sci. 290 797–810 Occurrence Handle10.2475/ajs.290.7.797

    Article  Google Scholar 

  • S. A. Carroll-Webb J. V. Walther (1988) ArticleTitleA surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates Geochim. Cosmochim. Acta 52 2609–2623 Occurrence Handle10.1016/0016-7037(88)90030-0

    Article  Google Scholar 

  • S. Dixit ParticleVan P. Cappellen (2002) ArticleTitleSurface chemistry and reactivity of biogenic silica Geochim. Cosmochim. Acta 66 IssueID14 2559–2568 Occurrence Handle10.1016/S0016-7037(02)00854-2

    Article  Google Scholar 

  • G. Furrer W. Stumm (1986) ArticleTitleThe coordination chemistry of weathering I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim Cosmochim. Acta 50 1847–1860

    Google Scholar 

  • S. A. Greenberg (1957) ArticleTitleThe depolymerization of silica in sodium hydroxide solutions J. Phys. Chem. 61 960–965

    Google Scholar 

  • J. E. Greenwood V. W. Truesdale A. R. Rendell (2001) ArticleTitleBiogenic silica dissolution in seawater–in vitro chemical kinetics Prog. Oceangr. 48 1–23

    Google Scholar 

  • H. C. Helgeson W. M. Murphy P. Aagaard (1984) ArticleTitleThermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants effective surface area and the hydrolysis of feldspar Geochim. Cosmochim. Acta 48 2405–2432 Occurrence Handle10.1016/0016-7037(84)90294-1

    Article  Google Scholar 

  • E. C. Henry (1988) Algal Cultures C. S. Lobban (Eds) et al. Experimental Phycology–A Laboratory Manual University Press Cambridge

    Google Scholar 

  • G. R. Holdren R. A. Berner (1979) ArticleTitleMechanism of feldspar weathering–I Experimental studies Geochim. Cosmochim. Acta 43 1161–1171 Occurrence Handle10.1016/0016-7037(79)90109-1

    Article  Google Scholar 

  • W. A. House D. R. Orr (1992) ArticleTitleInvestigation of the pH dependence of the kinetics of quartz dissolution at 25 °C J. Chem. Soc., Faraday Trans. 88 233–241

    Google Scholar 

  • F. J. Huertas L. Chou R. Wollast (1999) ArticleTitleMechanism of kaolinite dissolution at room temperature and pressure. Kinetic study Geochim. Cosmochim. Acta 63 3261–3275 Occurrence Handle10.1016/S0016-7037(99)00249-5

    Article  Google Scholar 

  • J. P. Icenhower P. M. Dove (2000) ArticleTitleThe dissolution kinetics of amorphous silica into sodium chloride solutions: Effects of temperature and ionic strength Geochim. Cosmochim. Acta 64 IssueID24 4193–4203 Occurrence Handle10.1016/S0016-7037(00)00487-7

    Article  Google Scholar 

  • A. Kamatani (1982) ArticleTitleDissolution rates of silica from diatoms decomposing at various temperatures Mar. Biol. 68 91–96 Occurrence Handle10.1007/BF00393146

    Article  Google Scholar 

  • A. Kamatani J. P. Riley (1979) ArticleTitleRate of dissolution of diatom silica walls in seawater Mar. Biol. 55 29–35 Occurrence Handle10.1007/BF00391714

    Article  Google Scholar 

  • A. Kamatani J. P. Riley G. Skirrow (1980) ArticleTitleThe dissolution of opaline silica of diatom tests in sea water J. Ocean. Soc. Jpn. 36 201–208

    Google Scholar 

  • K. G. Knauss T. J. Wolery (1986) ArticleTitleDependence of albite dissolution kinetics on pH and time at 25 °C and 70 °C Geochim. Cosmochim. Acta 50 2482–2497 Occurrence Handle10.1016/0016-7037(86)90031-1

    Article  Google Scholar 

  • K. G. Knauss T. J. Wolery (1988) ArticleTitleThe dissolution kinetics of quartz as a function of pH and time at 70° C Geochim. Cosmochim. Acta 52 43–53 Occurrence Handle10.1016/0016-7037(88)90055-5

    Article  Google Scholar 

  • E. Koning G.-J. Brummer ParticleVan W. Raaphorst ParticleVan J. Bennekom W. Helder ParticleVan J. Iperen (1997) ArticleTitleSettling, dissolution and burial of biogenic silica in the sediments off Somalia (northwestern Indian Ocean) Deep-Sea Res. 44 1341–1360

    Google Scholar 

  • Koroleff F. (1983) Determination of silicon. In Methods of Seawater Analysis (eds. K. Grasshoff et al.), Verlag Chemie.

  • A. C. Lasaga (1998) Kinetic Theory in the Earth Sciences Princeton University Press New Jersey 82–93

    Google Scholar 

  • A. C. Lasaga J. M. Soler J. Ganor T. E. Burch K. L. Nagy (1994) ArticleTitleChemical weathering rate laws and global geochemical cycles Geochim. Cosmochim. Acta 58 2361–2386 Occurrence Handle10.1016/0016-7037(94)90016-7

    Article  Google Scholar 

  • D. S. Lawson D. C. Hurd H. S. Pankratz (1978) ArticleTitleSilica dissolution rates of decomposing phytoplankton assemblages at various temperatures Am. J. Sci. 278 1373–1393 Occurrence Handle10.2475/ajs.278.10.1373

    Article  Google Scholar 

  • J. Lyman R. H. Flemming (1940) ArticleTitleComposition of sea water J. Mar. Res. 3 134

    Google Scholar 

  • J. McLachlan (1973) Growth media–marine J. R. Stein (Eds) In Handbook of Phychological Methods: Culture Methods and Growth Measurements University Press Cambridge

    Google Scholar 

  • R. Y. Morita (1974) Temperature effects on marine microorganisms. Proc. 2nd United States-Japan Conference on Marine Microbiology: Effect of the Ocean Environment on Microbial Activities Baltimore USA 75–79

    Google Scholar 

  • P. J. Müller R. Schneider (1993) ArticleTitleAn automated method for the determination of opal in sediments and particulate matter Deep-Sea Res. 40 425–444

    Google Scholar 

  • T. L. O’Connor S. A. Greenberg (1958) ArticleTitleThe kinetics for the solution of silica in aqueous solutions J. Phys. Chem. 63 1195–1198

    Google Scholar 

  • W. Stumm (1992) Chemistry of the Solid–Water Interface Wiley-Interscience, John Wiley & Sons Chichester, UK

    Google Scholar 

  • J. W. Tester W. G. Worley B. A. Robinson C. O. Grigsby J. L. Feerer (1994) ArticleTitleCorrelating quartz dissolution kinetics in pure water from 25 to 625 °C Geochim. Cosmochim. Acta 58 2407–2420 Occurrence Handle10.1016/0016-7037(94)90020-5

    Article  Google Scholar 

  • P. Tre’guer A. Kamatani S. Gueneley B. Que’guiner (1989) ArticleTitleKinetics of dissolution of Antarctic diatom frustules and the biogeochemical cycle of silicon in the Southern Ocean Polar Biology 9 397–403

    Google Scholar 

  • P. Cappellen ParticleVan S. Dixit J. Beusekom ParticleVan (2002) ArticleTitleBiogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates Global Biogeochem. Cycles 16 IssueID4 1075

    Google Scholar 

  • J. V. Walther (1996) ArticleTitleRelation between rates of aluminosilicate mineral dissolution, pH temperature and surface charge Am. J. Sci. 296 693–728 Occurrence Handle10.2475/ajs.296.7.693

    Article  Google Scholar 

  • E. Wieland W. Stumm (1992) ArticleTitleDissolution kinetics of kaolinite in acidic aqueous solutions at 25 °C Geochim. Cosmochim. Acta 56 3339–3355 Occurrence Handle10.1016/0016-7037(92)90382-S

    Article  Google Scholar 

  • E. Wieland B. Wehrli W. Stumm (1988) ArticleTitleThe coordination chemistry of weathering: III A generalization on the dissolution rates of minerals Geochim. Cosmochim. Acta 52 1969–1981 Occurrence Handle10.1016/0016-7037(88)90178-0

    Article  Google Scholar 

  • Wollast R. and Chou L. (1986) Process, rate, and proton consumption by silicate weathering. Trans. 13th Congr. Int. Soil. Sci.,Hamburg, pp. 127–136.

  • C. E. ZoBell J. E. Conn (1940) ArticleTitleStudies on the thermosensitivity of marine bacteria J. Bacteriol. 40 223–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JIM E. GREENWOOD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GREENWOOD, J.E., TRUESDALE, V.W. & RENDELL, A.R. Toward an Understanding of Biogenic-silica Dissolution in Seawater – An Initial Rate Approach Applied between 40 and 90 °C. Aquat Geochem 11, 1–20 (2005). https://doi.org/10.1007/s10498-004-9515-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-004-9515-y

Keywords

Navigation