Skip to main content
Log in

Single-cell aggrephagy-related patterns facilitate tumor microenvironment intercellular communication, influencing osteosarcoma progression and prognosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Osteosarcoma, a common malignant tumor in children, has emerged as a major threat to the life and health of pediatric patients. Presently, there are certain limitations in the diagnosis and treatment methods for this disease, resulting in inferior therapeutic outcomes. Therefore, it is of great importance to study its pathogenesis and explore innovative approaches to diagnosis and treatment. In this study, a non-negative matrix decomposition method was employed to conduct a comprehensive investigation and analysis of aggregated autophagy-related genes within 331,394 single-cell samples of osteosarcoma. Through this study, we have elucidated the intricate communication patterns among various cells within the tumor microenvironment. Based on the classification of aggregated autophagy-related genes, we are not only able to more accurately predict patients’ prognosis but also offer robust guidance for treatment strategies. The findings of this study hold promise for breakthroughs in the diagnosis and treatment of osteosarcoma, intervention of aggrephagy is expected to improve the survival rate and quality of life of osteosarcoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets mentioned during the current study are available in the GEO database and TCGA database.

References

  1. Ritter J, Bielack SS (2010) Osteosarcoma. Ann Oncol: Off J Eur Soc Med Oncol 21(Suppl 7):vii320-325

    Google Scholar 

  2. Xu Y, Shi F, Zhang Y et al (2023) Twenty-year outcome of prevalence, incidence, mortality and survival rate in patients with malignant bone tumors. Int J Cancer. https://doi.org/10.1002/ijc.34694

    Article  PubMed  Google Scholar 

  3. Xu Y, Du L, Han B et al (2023) Black phosphorus quantum dots camouflaged with platelet-osteosarcoma hybrid membrane and doxorubicin for combined therapy of osteosarcoma. J Nanobiotechnol 21:243

    CAS  Google Scholar 

  4. Bian J, Liu Y, Zhao X et al (2023) Research progress in the mechanism and treatment of osteosarcoma. Chin Med J 136:2412

    PubMed  PubMed Central  Google Scholar 

  5. Li S, Liu F, Zheng K et al (2021) CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis. Mol Cancer 20:161

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang F, Tie Y, Lan TX et al (2023) Surgical treatment of osteosarcoma induced distant pre-metastatic niche in lung to facilitate the colonization of circulating tumor cells. Adv Sci 10:e2207518

    Google Scholar 

  7. Guo X, Gao C, Yang DH, Li S (2023) Exosomal circular RNAs: a chief culprit in cancer chemotherapy resistance. Drug Resist Updat 67:100937

    CAS  PubMed  Google Scholar 

  8. Liu Y, Huang N, Qiao X et al (2023) Knockdown of PGC1α suppresses dysplastic oral keratinocytes proliferation through reprogramming energy metabolism. Int J Oral Sci 15:37

    PubMed  PubMed Central  Google Scholar 

  9. Xu M, Chen J, Zhang P et al (2023) An antibody-radionuclide conjugate targets fibroblast activation protein for cancer therapy. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-023-06300-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gibertini S, Ruggieri A, Cheli M, Maggi L (2023) Protein aggregates and aggrephagy in myopathies. Int J Mol Sci 24:8456

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma X, Lu C, Chen Y et al (2022) CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 185:1325–1345

    CAS  PubMed  Google Scholar 

  12. Lyu L, Chen Z, McCarty N (2022) TRIM44 links the UPS to SQSTM1/p62-dependent aggrephagy and removing misfolded proteins. Autophagy 18:783–798

    CAS  PubMed  Google Scholar 

  13. Chua BA, Lennan CJ, Sunshine MJ et al (2023) Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 30:460–472

    CAS  PubMed  Google Scholar 

  14. Chen X, Zhang M (2022) Chaperonin-containing TCP-1 subunit 2-mediated aggrephagy: a potential target for treating neurodegeneration. Clin Transl Med 12:e1027

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sn S, Pandurangi J, Murumalla R et al (2019) Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. EBioMedicine 50:260–273

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu C, Gong S, Duan Y et al (2023) A Tumor microenvironment-based prognostic index for osteosarcoma. J Biomed Sci 30:23

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao Y, Shen M, Wu L et al (2023) Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 14:587

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao YH, Ding J, Tang QH et al (2022) Deciphering cell-cell interactions and communication in the tumor microenvironment and unraveling intratumoral genetic heterogeneity via single-cell genomic sequencing. Bioengineered 13:14974–14986

    CAS  PubMed  Google Scholar 

  19. Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T (2023) Cancer-associated fibroblast heterogeneity and its influence on the extracellular matrix and the tumor microenvironment. Int J Mol Sci 24:13482

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng Y, Ye Z, Song F, He Y, Liu J (2022) The role of TAMs in tumor microenvironment and new research progress. Stem Cells Int 2022:5775696

    PubMed  PubMed Central  Google Scholar 

  21. Schina A, Sztupinszki Z, Marie Svane I, Szallasi Z, Jönsson G, Donia M (2023) Intratumoral T-cell and B-cell receptor architecture associates with distinct immune tumor microenvironment features and clinical outcomes of anti-PD-1/L1 immunotherapy. J ImmunoTher Cancer. https://doi.org/10.1136/jitc-2023-006941

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nirala BK, Patel TD, Kurenbekova L et al (2023) MYC regulates CSF1 expression via microRNA 17/20a to modulate tumor-associated macrophages in osteosarcoma. JCI Insight. https://doi.org/10.1172/jci.insight.164947

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei ZQ, Ding S, Yang YC (2023) TYROBP-positive endothelial cell-derived TWEAK as a promoter of osteosarcoma progression: insights from single-cell omics. Front Oncol 13:1200203

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang X, Wang L, Guo H, Zhang W, Shao Z (2022) Single-cell transcriptomics reveals the regulative roles of cancer associated fibroblasts in tumor immune microenvironment of recurrent osteosarcoma. Theranostics 12:5877–5887

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen YP, Yin JH, Li WF et al (2020) Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res 30:1024–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Puram SV, Tirosh I, Parikh AS et al (2017) Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171:1611–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Galbo PM Jr, Zang X, Zheng D (2021) Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin Cancer Res 27:2636–2647

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tikhonova MA (2020) A new avenue for treating Parkinson’s disease targeted at aggrephagy modulation and neuroinflammation: insights from in vitro and animal studies. EBioMedicine 51:102575

    PubMed  Google Scholar 

  29. Huang X, Chi H, Gou S et al (2023) An aggrephagy-related LncRNA signature for the prognosis of pancreatic adenocarcinoma. Genes 14:124

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyttinen JM, Amadio M, Viiri J, Pascale A, Salminen A, Kaarniranta K (2014) Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res Rev 18:16–28

    CAS  PubMed  Google Scholar 

  31. Cheng D, Zhang Z, Mi Z et al (2023) Deciphering the heterogeneity and immunosuppressive function of regulatory T cells in osteosarcoma using single-cell RNA transcriptome. Comput Biol Med 165:107417

    CAS  PubMed  Google Scholar 

  32. Liao Z, Li M, Wen G et al (2023) Comprehensive analysis of angiogenesis pattern and related immune landscape for individual treatment in osteosarcoma. NPJ Precis Oncol 7:62

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang J, Lu Y, Zheng J et al (2023) Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 14:586

    PubMed  PubMed Central  Google Scholar 

  34. Ma X, Geng Z, Wang S et al (2023) The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother 165:115029

    CAS  PubMed  Google Scholar 

  35. Zhou S, Ou H, Wu Y et al (2023) Targeting tumor endothelial cells with methyltransferase inhibitors: mechanisms of action and the potential of combination therapy. Pharmacol Ther 247:108434

    CAS  PubMed  Google Scholar 

  36. Zapletal E, Vasiljevic T, Busson P, Matijevic Glavan T (2023) Dialog beyond the grave: necrosis in the tumor microenvironment and its contribution to tumor growth. Int J Mol Sci 24:5278

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Elmusrati A, Wang J, Wang CY (2021) Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci 13:24

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Raudenska M, Balvan J, Hanelova K, Bugajova M, Masarik M (2023) Cancer-associated fibroblasts: mediators of head and neck tumor microenvironment remodeling. Biochim Biophys Acta Rev Cancer 1878:188940

    CAS  PubMed  Google Scholar 

  39. Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A (2020) Determinants and functions of CAFs secretome during cancer progression and therapy. Front Cell Dev Biol 8:621070

    PubMed  Google Scholar 

  40. Ronca R, Van Ginderachter JA, Turtoi A (2018) Paracrine interactions of cancer-associated fibroblasts, macrophages and endothelial cells: tumor allies and foes. Curr Opin Oncol 30:45–53

    CAS  PubMed  Google Scholar 

  41. Matsubara E, Yano H, Pan C et al (2023) The significance of SPP1 in lung cancers and its impact as a marker for protumor tumor-associated macrophages. Cancers 15:2250

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Javadian M, Gharibi T, Shekari N et al (2019) The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in Breast cancer development, progression, and metastasis. J Cell Physiol 234:5399–5412

    CAS  PubMed  Google Scholar 

  43. Shay G, Lynch CC, Fingleton B (2015) Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol 44–46:200–206

    PubMed  Google Scholar 

  44. Goodla L, Xue X (2022) The role of inflammatory mediators in colorectal cancer hepatic metastasis. Cells 11:2313

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Salminen A (2023) The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J Mol Med 101:1169

    CAS  PubMed  Google Scholar 

  46. Foglia B, Beltrà M, Sutti S, Cannito S (2023) Metabolic reprogramming of HCC: a new microenvironment for immune responses. Int J Mol Sci 24:7463

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wißfeld J, Werner A, Yan X, Ten Bosch N, Cui G (2022) Metabolic regulation of immune responses to cancer. Cancer Biol Med 19:1528–1542

    PubMed  PubMed Central  Google Scholar 

  48. Yim A, Smith C, Brown AM (2022) Osteopontin/secreted phosphoprotein-1 harnesses glial-, immune-, and neuronal cell ligand-receptor interactions to sense and regulate acute and chronic neuroinflammation. Immunol Rev 311:224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu C, Wu Y, Liu N (2022) Osteopontin in autoimmune disorders: current knowledge and future perspective. Inflammopharmacology 30:385–396

    CAS  PubMed  Google Scholar 

  50. Hao L, Li S, Hu X (2023) New insights into T-cell exhaustion in liver cancer: from mechanism to therapy. J Cancer Res Clin Oncol 149:12543–12560

    PubMed  Google Scholar 

  51. Tian W, Qin G, Jia M et al (2023) Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade. Front Immunol 14:1198551

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu M, Qin J, Tsai SY, Tsai MJ (2015) The role of the orphan nuclear receptor COUP-TFII in tumorigenesis. Acta Pharmacol Sin 36:32–36

    PubMed  Google Scholar 

  53. Krishnan V (2023) The RUNX family of proteins, DNA repair, and cancer. Cells 12:1106

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen Z, Yue Z, Yang K et al (2023) Four ounces can move a thousand pounds: the enormous value of nanomaterials in tumor immunotherapy. Adv Healthc Mater 12:e2300882

    PubMed  Google Scholar 

  55. Zhu X, Li S (2023) Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 22:94

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li S (2021) The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnol 19:277

    CAS  ADS  Google Scholar 

  57. Yue J, Chen ZS, Xu XX, Li S (2022) Functions and therapeutic potentials of exosomes in osteosarcoma. Acta Mater Med 1:552–562

    PubMed  PubMed Central  Google Scholar 

  58. Xu M, Li S (2023) Nano-drug delivery system targeting tumor microenvironment: a prospective strategy for melanoma treatment. Cancer Lett 574:216397

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Science and Technology Projects of Chongqing Education Commission (KJQN202000427), the Natural Science Foundation of Chongqing (cstb2022nscq-msx0139), and the Future Medical Innovation Team of Chongqing Medical University (W0080).

Author information

Authors and Affiliations

Authors

Contributions

CC and JYS designed the study; JYS, NY, DMH, and HYD anlyzed data and prepared figures; JYS drafted the manuscript, and CC revised the manuscript.

Corresponding author

Correspondence to Cheng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The data for this manuscript are drawn from publicly available datasets and therefore do not require ethical approval.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Ning, Y., Cheng, S. et al. Single-cell aggrephagy-related patterns facilitate tumor microenvironment intercellular communication, influencing osteosarcoma progression and prognosis. Apoptosis 29, 521–535 (2024). https://doi.org/10.1007/s10495-023-01922-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01922-5

Keywords

Navigation