Skip to main content
Log in

Loss of HMBOX1 promotes LPS-induced apoptosis and inhibits LPS-induced autophagy of vascular endothelial cells in mouse

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Our previous study revealed that Homeobox containing 1 (HMBOX1), essential for the survival of vascular endothelial cells (VECs), was involved in the progression of atherosclerosis. Knockdown of HMBOX1 promoted apoptosis and inhibited autophagy through regulating intracellular free zinc level in cultured VECs. In current study, in order to investigate the roles of HMBOX1 in vivo and in endothelium, we generated a knockout (KO) mouse for HMBOX1 by using transcription activator-like effector nucleases (TALENs) technology. Herein, we reported that the protein level of HMBOX1 was gradually increased during mouse development. The HMBOX1 KO mouse was viable and fertile. There existed no differences in apoptosis and autophagy of aortic endothelial cells between wild type and KO mouse. Whereas, loss of HMBOX1 promoted apoptosis and inhibited autophagy of aortic endothelial cells under lipopolysaccharide (LPS) stimulation in mouse. We also demonstrated that HMBOX1 deletion had no influence on the secretion of inflammatory cytokines TNF-α and IL-6. Moreover, overexpression or knockdown of HMBOX1 failed to regulate multiple pro-apoptotic genes expression in vitro. In conclusion, HMBOX1 participated in the functional maintenance of mouse aortic endothelial cells, the aortic endothelial cells of HMBOX1 KO mouse showed increased apoptosis and decreased autophagy with LPS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALT:

Alternative lengthening of telomeres

BMSC:

Bone marrow mesenchymal stem cell

ESC:

Embryonic stem cells

HMBOX1:

Homeobox containing 1

HNF:

Hepatocyte nuclear factor

HUVEC:

Human umbilical vascular endothelial cell

LPS:

Lipopolysaccharide

MT2A:

Metallothionein 2A

TALEN:

Transcription activator-like effector nuclease

VEC:

Vascular endothelial cell

WT:

Wild type

KO:

Knockout

References

  1. Chen S, Saiyin H, Zeng X, Xi J, Liu X, Li X, Yu L (2006) Isolation and functional analysis of human HMBOX1, a homeobox containing protein with transcriptional repressor activity. Cytogenet Genome Res 114(2):131–136. https://doi.org/10.1159/000093328

    Article  CAS  PubMed  Google Scholar 

  2. Wu L, Zhang C, Zhang J (2011) HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway. Cell Mol Immunol 8(5):433–440. https://doi.org/10.1038/cmi.2011.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu L, Zhang C, Zheng X, Tian Z, Zhang J (2011) HMBOX1, homeobox transcription factor, negatively regulates interferon-gamma production in natural killer cells. Int Immunopharmacol 11(11):1895–1900. https://doi.org/10.1016/j.intimp.2011.07.021

    Article  CAS  PubMed  Google Scholar 

  4. Gong J, Liu R, Zhuang R, Zhang Y, Fang L, Xu Z, Jin L, Wang T, Song C, Yang K, Wei Y, Yang A, Jin B, Chen L (2012) miR-30c-1* promotes natural killer cell cytotoxicity against human hepatoma cells by targeting the transcription factor HMBOX1. Cancer Sci 103(4):645–652. https://doi.org/10.1111/j.1349-7006.2012.02207.x

    Article  CAS  PubMed  Google Scholar 

  5. Yuan HX, Feng XE, Liu EL, Ge R, Zhang YL, Xiao BG, Li QS (2019) 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J Cell Mol Med 23(1):453–463. https://doi.org/10.1111/jcmm.13948

    Article  CAS  PubMed  Google Scholar 

  6. Zhao H, Han Q, Lu N, Xu D, Tian Z, Zhang J (2018) HMBOX1 in hepatocytes attenuates LPS/D-GalN-induced liver injury by inhibiting macrophage infiltration and activation. Mol Immunol 101:303–311. https://doi.org/10.1016/j.molimm.2018.07.021

    Article  CAS  PubMed  Google Scholar 

  7. Feng X, Luo Z, Jiang S, Li F, Han X, Hu Y, Wang D, Zhao Y, Ma W, Liu D, Huang J, Songyang Z (2013) The telomere-associated homeobox-containing protein TAH1/HMBOX1 participates in telomere maintenance in ALT cells. J Cell Sci 126(Pt 17):3982–3989. https://doi.org/10.1242/jcs.128512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kappei D, Butter F, Benda C, Scheibe M, Draskovic I, Stevense M, Novo CL, Basquin C, Araki M, Araki K, Krastev DB, Kittler R, Jessberger R, Londono-Vallejo JA, Mann M, Buchholz F (2013) HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. EMBO J 32(12):1681–1701. https://doi.org/10.1038/emboj.2013.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tarsounas M (2013) It's getting HOT at telomeres. EMBO J 32(12):1655–1657. https://doi.org/10.1038/emboj.2013.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang P, Liu Q, Yan S, Yuan G, Shen J, Li G (2017) Homeoboxcontaining protein 1 loss is associated with clinicopathological performance in glioma. Mol Med Rep 16(4):4101–4106. https://doi.org/10.3892/mmr.2017.7050

    Article  CAS  PubMed  Google Scholar 

  11. Zhou J, Wang M, Deng D (2018) c-Fos/microRNA-18a feedback loop modulates the tumor growth via HMBOX1 in human gliomas. Biomed Pharm 107:1705–1711. https://doi.org/10.1016/j.biopha.2018.08.157

    Article  CAS  Google Scholar 

  12. Yu YL, Diao NN, Li YZ, Meng XH, Jiao WL, Feng JB, Liu ZP, Lu N (2018) Low expression level of HMBOX1 in high-grade serous ovarian cancer accelerates cell proliferation by inhibiting cell apoptosis. Biochem Biophys Res Commun 501(2):380–386. https://doi.org/10.1016/j.bbrc.2018.04.203

    Article  CAS  PubMed  Google Scholar 

  13. Zhao H, Jia H, Han Q, Zhang J (2018) Homeobox containing 1 inhibits liver cancer progression by promoting autophagy as well as inhibiting stemness and immune escape. Oncol Rep 40(3):1657–1665. https://doi.org/10.3892/or.2018.6551

    Article  CAS  PubMed  Google Scholar 

  14. Diao N, Li Y, Yang J, Jin C, Meng X, Jiao W, Feng J, Liu Z, Lu N (2019) High expression of HMBOX1 contributes to poor prognosis of gastric cancer by promoting cell proliferation and migration. Biomed Pharm 115:108867. https://doi.org/10.1016/j.biopha.2019.108867

    Article  CAS  Google Scholar 

  15. Zhou S, Xiao Y, Zhuang Y, Liu Y, Zhao H, Yang H, Xie C, Zhou F, Zhou Y (2017) Knockdown of homeobox containing 1 increases the radiosensitivity of cervical cancer cells through telomere shortening. Oncol Rep 38(1):515–521. https://doi.org/10.3892/or.2017.5707

    Article  CAS  PubMed  Google Scholar 

  16. Su L, Zhao H, Sun C, Zhao B, Zhao J, Zhang S, Su H, Miao J (2010) Role of Hmbox1 in endothelial differentiation of bone-marrow stromal cells by a small molecule. ACS Chem Biol 5(11):1035–1043. https://doi.org/10.1021/cb100153r

    Article  CAS  PubMed  Google Scholar 

  17. Han L, Shao J, Su L, Gao J, Wang S, Zhang Y, Zhang S, Zhao B, Miao J (2012) A chemical small molecule induces mouse embryonic stem cell differentiation into functional vascular endothelial cells via Hmbox1. Stem Cells Dev 21(15):2762–2769. https://doi.org/10.1089/scd.2012.0055

    Article  CAS  PubMed  Google Scholar 

  18. Ma H, Su L, Zhang S, Kung H, Miao J (2016) Inhibition of ANXA7 GTPase activity by a small molecule promotes HMBOX1 translation of vascular endothelial cells in vitro and in vivo. Int J Biochem Cell Biol 79:33–40. https://doi.org/10.1016/j.biocel.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  19. Ma H, Su L, Yue H, Yin X, Zhao J, Zhang S, Kung H, Xu Z, Miao J (2015) HMBOX1 interacts with MT2A to regulate autophagy and apoptosis in vascular endothelial cells. Scientific reports 5:15121. https://doi.org/10.1038/srep15121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burglin TR, Affolter M (2016) Homeodomain proteins: an update. Chromosoma 125(3):497–521. https://doi.org/10.1007/s00412-015-0543-8

    Article  CAS  PubMed  Google Scholar 

  21. Holland PW (2013) Evolution of homeobox genes. Wiley Interdiscip Rev 2(1):31–45. https://doi.org/10.1002/wdev.78

    Article  CAS  Google Scholar 

  22. Ma H, Li Y, Wang X, Wu H, Qi G, Li R, Yang N, Gao M, Yan S, Yuan C, Kong B (2019) PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis 10(3):166. https://doi.org/10.1038/s41419-019-1415-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Bock BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquiere B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de VM, van Hinsbergh, Vermeulen VWM, Waltenberger PB, Weinstein J, Xin BM, Yetkin-Arik H, Yla-Herttuala B, Yoder S, Griffioen MC AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532. https://doi.org/10.1007/s10456-018-9613-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kachgal S, Mace KA, Boudreau NJ (2012) The dual roles of homeobox genes in vascularization and wound healing. Cell Adhes Migr 6(6):457–470. https://doi.org/10.4161/cam.22164

    Article  Google Scholar 

  25. He B, Ni ZL, Kong SB, Lu JH, Wang HB (2018) Homeobox genes for embryo implantation: from mouse to human. Anim Models Exp Med 1(1):14–22. https://doi.org/10.1002/ame2.12002

    Article  Google Scholar 

  26. Procino A (2016) Class I homeobox genes, "The Rosetta Stone of the Cell Biology", in the regulation of cardiovascular development. Curr Med Chem 23(3):265–275

    Article  CAS  Google Scholar 

  27. Pfalzgraff A, Weindl G (2019) Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis. Trends Pharmacol Sci 40(3):187–197. https://doi.org/10.1016/j.tips.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  28. Yang WS, Kim JJ, Lee MJ, Lee EK, Park SK (2018) ADAM17-mediated ectodomain shedding of toll-like receptor 4 as a negative feedback regulation in lipopolysaccharide-activated aortic endothelial cells. Cell Physiol Biochem 45 (5):1851–1862. https://doi.org/10.1159/000487876

    Article  CAS  PubMed  Google Scholar 

  29. Yao Y, Jia H, Wang G, Ma Y, Sun W, Li P (2019) miR-297 Protects human umbilical vein endothelial cells against LPS-induced inflammatory response and apoptosis. Cell Physiol Biochem 52 (4):696–707. https://doi.org/10.33594/000000049

    Article  CAS  PubMed  Google Scholar 

  30. Dayang EZ, Plantinga J, Ter Ellen B, van Meurs M, Molema G, Moser J (2019) Identification of LPS-activated endothelial subpopulations with distinct inflammatory phenotypes and regulatory signaling mechanisms. Front Immunol 10:1169. doi:https://doi.org/10.3389/fimmu.2019.01169

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ogata-Suetsugu S, Yanagihara T, Hamada N, Ikeda-Harada C, Yokoyama T, Suzuki K, Kawaguchi T, Maeyama T, Kuwano K, Nakanishi Y (2017) Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. Biochem Biophys Res Commun 484(2):422–428. https://doi.org/10.1016/j.bbrc.2017.01.142

    Article  CAS  PubMed  Google Scholar 

  32. Meng N, Wu L, Gao J, Zhao J, Su L, Su H, Zhang S, Miao J (2010) Lipopolysaccharide induces autophagy through BIRC2 in human umbilical vein endothelial cells. J Cell Physiol 225(1):174–179. https://doi.org/10.1002/jcp.22210

    Article  CAS  PubMed  Google Scholar 

  33. Pickworth CM, Beal R, Reglero N, Lintermans L, Colom B, Voisin M-B, Golding M, Nourshargh S (2016) Microvascular endothelial cells can exhibit autophagy in vivo: role in neutrophil transendothelial cell migration? FASEB J 30(1 Supplement):165-8

    Google Scholar 

  34. Zhang D, Zhou J, Ye LC, Li J, Wu Z, Li Y, Li C (2018) Autophagy maintains the integrity of endothelial barrier in LPS-induced lung injury. J Cell Physiol 233(1):688–698. https://doi.org/10.1002/jcp.25928

    Article  CAS  PubMed  Google Scholar 

  35. Thambiayya K, Wasserloos K, Kagan VE, Stoyanovsky D, Pitt BR (2012) A critical role for increased labile zinc in reducing sensitivity of cultured sheep pulmonary artery endothelial cells to LPS-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 302(12):L1287–L1295. doi:https://doi.org/10.1152/ajplung.00385.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thambiayya K, Kaynar AM, St Croix CM, Pitt BR (2012) Functional role of intracellular labile zinc in pulmonary endothelium. Pulm Circ 2(4):443–451. https://doi.org/10.4103/2045-8932.105032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thambiayya K, Wasserloos KJ, Huang Z, Kagan VE, St Croix CM, Pitt BR (2011) LPS-induced decrease in intracellular labile zinc, [Zn]i, contributes to apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 300(4):L624–L632. doi:https://doi.org/10.1152/ajplung.00376.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 31870831, 91539105, 81321061, 81902656), and the Shandong Provincial Natural Science Foundation (Grant No. ZR2019BH059).

Author information

Authors and Affiliations

Authors

Contributions

MH conceived of the presented idea, designed and performed the experiments, analyzed the data, carried out data interpretation, designed the figures, wrote the paper. SL performed the experiments, analyzed the data, carried out data interpretation. HX performed the experiments. MJ conceived and designed the experiments, supervised the work. All authors read and approved the final version of this manuscript.

Corresponding author

Correspondence to JunYing Miao.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

All experimental procedures and animal care were performed in accordance with the ARRIVE guidelines [38] and approved by the ethics committee of Shandong University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Su, L., He, X. et al. Loss of HMBOX1 promotes LPS-induced apoptosis and inhibits LPS-induced autophagy of vascular endothelial cells in mouse. Apoptosis 24, 946–957 (2019). https://doi.org/10.1007/s10495-019-01572-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01572-6

Keywords

Navigation