Skip to main content
Log in

Drosophila jumu modulates apoptosis via a JNK-dependent pathway and is required for other processes in wing development

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Previous studies in several model organisms have revealed that members of the Forkhead (Fkh) transcription factor family have multiple functions. Drosophila Jumeau (Jumu), a member of this family, participates in cardiogenesis, hematopoiesis and immune system homeostasis. Here, we show that loss of jumu function positively regulates or triggers apoptosis via a JNK-dependent pathway in wing development. jumu mutants showed reduced wing size and increased apoptosis. Moreover, we observed a loss of the anterior cross vein (ACV) phenotype that was similar to that observed in wings in which JNK signaling has been ectopically activated. The JNK signaling markers puckered (puc) and p-JNK were also significantly increased in the wing discs of jumu mutants. In addition, apoptosis induced by the loss of jumu was rescued by knocking down JNK, indicating a role for JNK in reducing jumu-induced apoptosis. Jumu could also control wing margin development via the positive regulation of cut expression, and the observed wing margin defect did not result from a loss of jumu-induced apoptosis. Further, jumu deficiency in the pupal wing could induce multiple wing hairs via a Rho1-mediated planar cell polarity pathway, but abnormal Rho1 expression was not why jumu loss induced apoptosis via a JNK-dependent pathway in wing discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252

    Article  CAS  PubMed  Google Scholar 

  2. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19:142–149

    Article  CAS  PubMed  Google Scholar 

  3. Wu C, Chen C, Dai J, Zhang F, Chen Y, Li W, Pastor-Pareja JC, Xue L (2015) Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila. Open Biol 5:140171. https://doi.org/10.1098/rsob.140171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun G, Irvine KD (2013) Ajuba family proteins link JNK to hippo signaling. Sci Signal 6:ra81. https://doi.org/10.1126/scisignal.2004324

    Article  CAS  PubMed  Google Scholar 

  5. Ma X, Xu W, Zhang D, Yang Y, Li W, Xue L (2015) Wallenda regulates JNK-mediated cell death in Drosophila. Cell Death Dis 6:e1737. https://doi.org/10.1038/cddis.2015.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hwang S, Song S, Hong YK, Choi G, Suh YS, Han SY, Lee M, Park SH, Lee JH, Lee S, Bang SM, Jeong Y, Chung WJ, Lee IS, Jeong G, Chung J, Cho KS (2013) Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet 9:e1003412. https://doi.org/10.1371/journal.pgen.1003412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758. https://doi.org/10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Umemori M, Habara O, Iwata T, Maeda K, Nishinoue K, Okabe A, Takemura M, Takahashi K, Saigo K, Ueda R, Adachi-Yamada T (2009) RNAi-mediated knockdown showing impaired cell survival in Drosophila wing imaginal disc. Gene Regul Syst Bio 3:11–20

    PubMed  PubMed Central  Google Scholar 

  9. Dichtel-Danjoy ML, Ma D, Dourlen P, Chatelain G, Napoletano F, Robin M, Corbet M, Levet C, Hafsi H, Hainaut P, Ryoo HD, Bourdon JC, Mollereau B (2013) Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation. Cell Death Differ 20:108–116. https://doi.org/10.1038/cdd.2012.100

    Article  CAS  PubMed  Google Scholar 

  10. Herrera SC, Martín R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9:e1003446. https://doi.org/10.1371/journal.pgen.1003446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan Y, Wang S, Hernandez J, Yenigun VB, Hertlein G, Fogarty CE, Lindblad JL, Bergmann A (2014) Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 10:e1004131. https://doi.org/10.1371/journal.pgen.1004131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pérez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136:1169–1177. https://doi.org/10.1242/dev.034017

    Article  CAS  PubMed  Google Scholar 

  13. Ma X, Chen Y, Xu W, Wu N, Li M, Cao Y, Wu S, Li Q, Xue L (2015) Impaired Hippo signaling promotes Rho1-JNK-dependent growth. Proc Natl Acad Sci USA 112:1065–1070. https://doi.org/10.1073/pnas.1415020112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nehls N, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107

    Article  CAS  PubMed  Google Scholar 

  15. Cheah PY, Chia W, Yang X (2000) Jumeaux, a novel Drosophila winged-helix family protein, is required for generating asymmetric sibling neuronal cell fates. Development 127:3325–3335

    CAS  PubMed  Google Scholar 

  16. Strödicke M, Karberg S, Korge G (2000) Domina (Dom), a new Drosophila member of the FKH/WH gene family, affects morphogenesis and is a suppressor of position-effect variegation. Mech Dev 96:67–78

    Article  PubMed  Google Scholar 

  17. Ahmad SM, Tansey TR, Busser BW, Nolte MT, Jeffries N, Gisselbrecht SS, Rusan NM, Michelson AM (2012) Two forkhead transcription factors regulate the division of cardiac progenitor cells by a polo-dependent pathway. Dev Cell 23:97–111. https://doi.org/10.1016/j.devcel.2012.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahmad SM, Bhattacharyya P, Jeffries N, Gisselbrecht SS, Michelson AM (2016) Two Forkhead transcription factors regulate cardiac progenitor specification by controlling the expression of receptors of the fibroblast growth factor and Wnt signaling pathways. Development 143:306–317. https://doi.org/10.1242/dev

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin LH, Shim J, Yoon JS, Kim B, Kim J, Kim-Ha J, Kim YJ (2008) Identification and functional analysis of antifungal immune response genes in Drosophila. PLoS Pathog 4:e1000168. https://doi.org/10.1371/journal.ppat.1000168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang G, Hao Y, Jin LH (2016) Overexpression of jumu induces melanotic nodules by activating Toll signaling in Drosophila. Insect Biochem Mol Biol 77:31–38. https://doi.org/10.1016/j.ibmb.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  21. Hao Y, Jin LH (2017) Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. Elife 6. pii: e25094. https://doi.org/10.7554/eLife.25094

  22. Zhu X, Ahmad SM, Aboukhalil A, Busser BW, Kim Y, Tansey TR, Haimovich A, Jeffries N, Bulyk ML, Michelson AM (2012) Differential regulation of mesodermal gene expression by Drosophila cell type-specific forkhead transcription factors. Development 139:1457–1466. https://doi.org/10.1242/dev.069005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willsey HR, Zheng X, Carlos Pastor-Pareja J, Willsey AJ, Beachy PA, Xu T (2016) Localized JNK signaling regulates organ size during development. Elife 5:e11491. https://doi.org/10.7554/eLife.11491

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martín-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A (1998) puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12:557–570

    Article  PubMed  PubMed Central  Google Scholar 

  25. Capdevila J, Guerrero I (1994) Targeted expression of the signaling molecule decapentaplegic induces pattern duplications and growth alterations in Drosophila wings. EMBO J 13:4459–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guillén I, Mullor JL, Capdevila J, Sánchez-Herrero E, Morata G, Guerrero I (1995) The function of engrailed and the specification of Drosophila wing pattern. Development 121:3447–3456

    PubMed  Google Scholar 

  27. Liu Z, Matsuoka S, Enoki A, Yamamoto T, Furukawa K, Yamasaki Y, Nishida Y, Sugiyama S (2011) Negative modulation of bone morphogenetic protein signaling by Dullard during wing vein formation in Drosophila. Dev Growth Differ 53:822–841. https://doi.org/10.1111/j.1440-169X.2011.01289.x

    Article  CAS  PubMed  Google Scholar 

  28. Hay BA (2000) Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ 7:1045–1056

    Article  CAS  PubMed  Google Scholar 

  29. Rothenfluh A, Threlkeld RJ, Bainton RJ, Tsai LT, Lasek AW, Heberlein U (2006) Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 127:199–211

    Article  CAS  PubMed  Google Scholar 

  30. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  31. St Johnston RD, Hoffmann FM, Blackman RK, Segal D, Grimaila R, Padgett RW, Irick HA, Gelbart WM (1990) Molecular organization of the decapentaplegic gene in Drosophila melanogaster. Genes Dev 4:1114–1127

    Article  CAS  PubMed  Google Scholar 

  32. Mathew SJ, Haubert D, Krönke M, Leptin M (2009) Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 122:1939–1946. https://doi.org/10.1242/jcs.044487

    Article  CAS  PubMed  Google Scholar 

  33. Neisch AL, Speck O, Stronach B, Fehon RG (2010) Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. J Cell Biol 189:311–323. https://doi.org/10.1083/jcb.200912010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan J, Lu Q, Fang X, Adler PN (2009) Rho1 has multiple functions in Drosophila wing planar polarity. Dev Biol 333:186–199. https://doi.org/10.1016/j.ydbio.2009.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  CAS  PubMed  Google Scholar 

  36. Serrano N, O’Farrell PH (1997) Limb morphogenesis: connections between patterning and growth. Curr Biol 7:R186–R195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campbell G, Weaver T, Tomlinson A (1993) Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74:1113–1123

    Article  CAS  PubMed  Google Scholar 

  38. Akiyama T, Kamimura K, Firkus C, Takeo S, Shimmi O, Nakato H (2008) Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface. Dev Biol 313:408–419

    Article  CAS  PubMed  Google Scholar 

  39. Entchev EV, Schwabedissen A, González-Gaitán M (2000) Gradient formation of the TGF-beta homolog Dpp. Cell 103:981–991

    Article  CAS  PubMed  Google Scholar 

  40. Teleman AA, Cohen SM (2000) Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103:971–980

    Article  CAS  PubMed  Google Scholar 

  41. Affolter M, Basler K (2007) The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 8:663–674

    Article  CAS  PubMed  Google Scholar 

  42. Martín-Castellanos C, Edgar BA (2002) A characterization of the effects of Dpp signaling on cell growth and proliferation in the Drosophila wing. Development 129:1003–1013

    PubMed  Google Scholar 

  43. Nellen D, Burke R, Struhl G, Basler K (1996) Direct and long-range action of a DPP morphogen gradient. Cell 85:357–368

    Article  CAS  PubMed  Google Scholar 

  44. Künnapuu J, Björkgren I, Shimmi O (2009) The Drosophila DPP signal is produced by cleavage of its proprotein at evolutionary diversified furin-recognition sites. Proc Natl Acad Sci USA 106:8501–8506. https://doi.org/10.1073/pnas.0809885106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spencer FA, Hoffmann FM, Gelbart WM (1982) Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28:451–461

    Article  CAS  PubMed  Google Scholar 

  46. Neumann CJ, Cohen SM (1997) Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124:871–880

    CAS  PubMed  Google Scholar 

  47. Strigini M, Cohen SM (2000) Wingless gradient formation in the Drosophila wing. Curr Biol 10:293–300

    Article  CAS  PubMed  Google Scholar 

  48. Zecca M, Basler K, Struhl G (1996) Direct and long-range action of a wingless morphogen gradient. Cell 87:833–844

    Article  CAS  PubMed  Google Scholar 

  49. Martín FA, Peréz-Garijo A, Morata G (2009) Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53:1341–1347. https://doi.org/10.1387/ijdb.072447fm

    Article  PubMed  Google Scholar 

  50. Huang J, Feng Y, Chen X, Li W, Xue L (2017) Myc inhibits JNK-mediated cell death in vivo. Apoptosis 22:479–490. https://doi.org/10.1007/s10495-016-1340-4

    Article  CAS  PubMed  Google Scholar 

  51. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117:107–116

    Article  PubMed  Google Scholar 

  52. Wu DC, Johnston LA (2010) Control of wing size and proportions by Drosophila myc. Genetics 184:199–211. https://doi.org/10.1534/genetics.109.110379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10:31–54

    Article  CAS  PubMed  Google Scholar 

  54. Chant J, Stowers L (1995) GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81:1–4

    Article  CAS  PubMed  Google Scholar 

  55. Bloor JW, Kiehart DP (2002) Drosophila RhoA regulates the cytoskeleton and cell-cell adhesion in the developing epidermis. Development 129:3173–3183

    CAS  PubMed  Google Scholar 

  56. Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10:33–44

    Article  CAS  PubMed  Google Scholar 

  57. Warner SJ, Yashiro H, Longmore GD (2010) The Cdc42/Par6/aPKC polarity complex regulates apoptosis-induced compensatory proliferation in epithelia. Curr Biol 20:677–686. https://doi.org/10.1016/j.cub.2010.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chountala M, Vakaloglou KM, Zervas CG (2012) Parvin overexpression uncovers tissue-specific genetic pathways and disrupts F-actin to induce apoptosis in the developing epithelia in Drosophila. PLoS ONE 7:e47355. https://doi.org/10.1371/journal.pone.0047355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Magie CR, Pinto-Santini D, Parkhurst SM (2002) Rho1 interacts with p120ctn and alpha-catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 129:3771–3782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alan M Michelson for supplying us with the fly strains used in this study. We gratefully acknowledge Vienna Drosophila RNAi Stock Center, Tsinghua Drosophila model animal center, GenExel Stock Center and Developmental Studies Hybridoma Bank for providing fly lines and antibodies.

Funding

This work was supported by the National Natural Science Foundation of China (31772521) and Fundamental Research Funds for the Central Universities (2572018CG05, 2572015AA10).

Author information

Authors and Affiliations

Authors

Contributions

XCW, investigation, visualization, writing—original draft; LZ, review; LHJ, supervision, funding acquisition, project administration—review and editing.

Corresponding author

Correspondence to Li Hua Jin.

Ethics declarations

Competing interests

The authors declare no competing or financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.C., Liu, Z. & Jin, L.H. Drosophila jumu modulates apoptosis via a JNK-dependent pathway and is required for other processes in wing development. Apoptosis 24, 465–477 (2019). https://doi.org/10.1007/s10495-019-01527-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01527-x

Keywords

Navigation