Skip to main content

Advertisement

Log in

Clotam enhances anti-proliferative effect of vincristine in Ewing sarcoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Current therapeutic strategies used in Ewing sarcoma (ES) especially for relapsed patients have resulted in modest improvements in survival over the past 20 years. Combination therapeutic approach presents as an alternative to overcoming drug resistance in metastatic ES. This study evaluated the effect of Clotam (tolfenamic acid or TA), a small molecule and inhibitor of Specificity protein1 (Sp1) and survivin for sensitizing ES cell lines to chemotherapeutic agent, vincristine (VCR). ES cells (CHLA-9 and TC-32) were treated with TA or VCR or TA + VCR (combination), and cell viability was assessed after 24/48/72 h. Effect of TA or VCR or TA + VCR treatment on cell cycle arrest and apoptosis were evaluated using propidium iodide, cell cycle assay and Annexin V flow cytometry respectively. The apoptosis markers, caspase 3/7 (activity levels) and cleaved-PARP (protein expression) were measured. Cardiomyocytes, H9C2 were used as non-malignant cells. While, all treatments caused time- and dose-dependent inhibition of cell viability, interestingly, combination treatment caused significantly higher response (~ 80% inhibition, p < 0.05). Cell viability inhibition was accompanied by inhibition of Sp1 and Survivin. TA + VCR treatment significantly (p < 0.05) increased caspase 3/7 activity which strongly correlated with upregulated c-PARP level and Annexin V staining. Cell cycle arrest was observed at G0/G1 (TA) or G2/M (VCR and TA + VCR). All treatments did not cause cytotoxicity in H9C2 cells. These results suggest that TA could enhance the anti-cancer activity of VCR in ES cells. Therefore, TA + VCR combination could be further tested to develop as safe/effective therapeutic strategy for treating ES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jo VY, Fletcher CD (2014) WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 46:95–104

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  3. Mascarenhas L, Felgenhauer JL, Bond MC et al (2016) Pilot study of adding vincristine, topotecan, and cyclophosphamide to interval-compressed chemotherapy in newly diagnosed patients with localized Ewing sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 63:493–498

    Article  CAS  PubMed  Google Scholar 

  4. Kebudi R, Cakir FB, Gorgun O, Agaoglu FY, Darendeliler E (2013) A modified protocol with vincristine, topotecan, and cyclophosphamide for recurrent/progressive Ewing sarcoma family tumors. Pediatr Hematol Oncol 30:170–177

    Article  CAS  PubMed  Google Scholar 

  5. Ferrari S, Palmerini E, Alberghini M et al (2010) Vincristine, doxorubicin, cyclophosfamide, actinomycin D, ifosfamide, and etoposide in adult and pediatric patients with nonmetastatic Ewing sarcoma. Final results of a monoinstitutional study. Tumori 96:213–218

    Article  CAS  PubMed  Google Scholar 

  6. Gaspar N, Hawkins DS, Dirksen U et al (2015) Ewing sarcoma: current management and future approaches through collaboration. J Clin Oncol 33:3036–3140

    Article  CAS  PubMed  Google Scholar 

  7. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2:21–32

    Article  CAS  PubMed  Google Scholar 

  8. Yap BS, Baker LH, Sinkovics JG et al (1980) Cyclophosphamide, vincristine, adriamycin, and DTIC (CYVADIC) combination chemotherapy for the treatment of advanced sarcomas. Cancer Treat Rep 64:93–98

    CAS  PubMed  Google Scholar 

  9. Breitfeld PP, Lyden E, Raney RB et al (2001) Ifosfamide and etoposide are superior to vincristine and melphalan for pediatric metastatic rhabdomyosarcoma when administered with irradiation and combination chemotherapy: a report from the Intergroup Rhabdomyosarcoma Study Group. J Pediatr Hematol Oncol 23:225–233

    Article  CAS  PubMed  Google Scholar 

  10. Thompson J, George EO, Poquette CA et al (1999) Synergy of topotecan in combination with vincristine for treatment of pediatric solid tumor xenografts. Clin Cancer Res 5:3617–3631

    CAS  PubMed  Google Scholar 

  11. Simsek T, Uner M, Trak B, Erman O, Zorlu GC (1998) Toxicity of chemotherapeutical protocols in the treatment of uterine sarcomas (vincristine, actinomycin D, cyclophosphamide VAC versus ifosfamide). Eur J Gynaecol Oncol 19:405–407

    CAS  PubMed  Google Scholar 

  12. Paulussen M, Ahrens S, Craft AW et al (1998) Ewing’s tumors with primary lung metastases: survival analysis of 114 (European Intergroup) cooperative Ewing’s sarcoma studies patients. J Clin Oncol 16:3044–3052

    Article  CAS  PubMed  Google Scholar 

  13. Bacci G, Picci P, Ferrari S et al (1998) Neoadjuvant chemotherapy for Ewing’s sarcoma of bone: no benefit observed after adding ifosfamide and etoposide to vincristine, actinomycin, cyclophosphamide, and doxorubicin in the maintenance phase—results of two sequential studies. Cancer 82:1174–1183

    Article  CAS  PubMed  Google Scholar 

  14. Craft A, Cotterill S, Malcolm A et al (1998) Ifosfamide-containing chemotherapy in Ewing’s sarcoma: the Second United Kingdom Children’s Cancer Study Group and the Medical Research Council Ewing’s Tumor Study. J Clin Oncol 16:3628–3633

    Article  CAS  PubMed  Google Scholar 

  15. Shelake S, Sankpal UT, Paul Bowman W, Wise M, Ray A, Basha R (2016) Targeting specificity protein 1 transcription factor and survivin using tolfenamic acid for inhibiting Ewing sarcoma cell growth. Invest New Drugs. https://doi.org/10.1007/s10637-016-0417-9

    Article  PubMed  Google Scholar 

  16. Sankpal UT, Nagaraju GP, Gottipolu SR et al (2016) Combination of tolfenamic acid and curcumin induces colon cancer cell growth inhibition through modulating specific transcription factors and reactive oxygen species. Oncotarget 7:3186–3200

    Article  PubMed  Google Scholar 

  17. Sankpal UT, Ingersoll SB, Ahmad S et al (2016) Association of Sp1 and survivin in epithelial ovarian cancer: Sp1 inhibitor and cisplatin, a novel combination for inhibiting epithelial ovarian cancer cell proliferation. Tumour Biol 37:14259–14269

    Article  CAS  PubMed  Google Scholar 

  18. Basha R, Connelly SF, Sankpal UT et al (2016) Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution. J Nutr Biochem 31:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sutphin RM, Connelly SF, Lee CM et al (2014) Anti-leukemic response of a NSAID, tolfenamic acid. Target Oncol 9:135–144

    Article  PubMed  Google Scholar 

  20. Pathi S, Li X, Safe S (2014) Tolfenamic acid inhibits colon cancer cell and tumor growth and induces degradation of specificity protein (Sp) transcription factors. Mol Carcinog 53(Suppl 1):E53–E61

    Article  CAS  PubMed  Google Scholar 

  21. Chang JW, Kang SU, Choi JW et al (2014) Tolfenamic acid induces apoptosis and growth inhibition in anaplastic thyroid cancer: Involvement of nonsteroidal anti-inflammatory drug-activated gene-1 expression and intracellular reactive oxygen species generation. Free Radic Biol Med 67:115–130

    Article  CAS  PubMed  Google Scholar 

  22. Kim HJ, Cho SD, Kim J et al (2013) Apoptotic effect of tolfenamic acid on MDA-MB-231 breast cancer cells and xenograft tumors. J Clin Biochem Nutr 53:21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaitkus A, Pauza V (2002) [Effectiveness of tolfenamic acid in the prevention of migraine]. Medicina (Kaunas) 38:296–303

    Google Scholar 

  24. Shelake S, Eslin D, Sutphin RM et al (2015) Combination of 13 cis-retinoic acid and tolfenamic acid induces apoptosis and effectively inhibits high-risk neuroblastoma cell proliferation. Int J Dev Neurosci 46:92–99

    Article  CAS  PubMed  Google Scholar 

  25. Eslin D, Sankpal UT, Lee C et al (2013) Tolfenamic acid inhibits neuroblastoma cell proliferation and induces apoptosis: a novel therapeutic agent for neuroblastoma. Mol Carcinog 52:377–386

    Article  CAS  PubMed  Google Scholar 

  26. Dittus C, Grover N, Ellsworth S, Tan X, Park SI (2018) Bortezomib in combination with dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) induces long-term survival in patients with plasmablastic lymphoma: a retrospective analysis. Leuk Lymphoma 59:2121–2127

    Article  CAS  Google Scholar 

  27. Qaddoumi I, Billups CA, Tagen M et al (2012) Topotecan and vincristine combination is effective against advanced bilateral intraocular retinoblastoma and has manageable toxicity. Cancer 118:5663–5670

    Article  CAS  PubMed  Google Scholar 

  28. Isono M, Sato A, Asano T (2016) A case of long-term survival of advanced paratesticular rhabdomyosarcoma treated with a multimodal therapy including a combination of cyclophosphamide, vincristine, doxorubicin and dacarbazine. Urol Case Rep 7:3–6

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wagner MJ, Gopalakrishnan V, Ravi V et al (2017) Vincristine, ifosfamide, and doxorubicin for initial treatment of Ewing sarcoma in adults. Oncologist 22:1271–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lavoie Smith EM, Li L, Chiang C et al (2015) Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Peripher Nerv Syst 20:37–46

    Article  CAS  PubMed  Google Scholar 

  31. Mora E, Smith EM, Donohoe C, Hertz DL (2016) Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res 6:2416–2430

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 14(Suppl 4):iv45–i54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sankpal UT, Lee CM, Connelly SF et al (2013) Cellular and organismal toxicity of the anti-cancer small molecule, tolfenamic acid: a pre-clinical evaluation. Cell Physiol Biochem 32:675–686

    Article  CAS  PubMed  Google Scholar 

  34. Eslin D, Lee C, Sankpal UT et al (2013) Anticancer activity of tolfenamic acid in medulloblastoma: a preclinical study. Tumour Biol 34:2781–2789

    Article  CAS  PubMed  Google Scholar 

  35. Kappler M, Kotzsch M, Bartel F et al (2003) Elevated expression level of survivin protein in soft-tissue sarcomas is a strong independent predictor of survival. Clin Cancer Res 9:1098–1104

    CAS  PubMed  Google Scholar 

  36. Xu R, Zhang P, Huang J, Ge S, Lu J, Qian G (2007) Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun 356:286–292

    Article  CAS  PubMed  Google Scholar 

  37. Abdelrahim M, Baker CH, Abbruzzese JL, Safe S (2006) Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst 98:855–868

    Article  CAS  PubMed  Google Scholar 

  38. Basha R, Ingersoll SB, Sankpal UT et al (2011) Tolfenamic acid inhibits ovarian cancer cell growth and decreases the expression of c-Met and survivin through suppressing specificity protein transcription factors. Gynecol Oncol 122:163–170

    Article  CAS  PubMed  Google Scholar 

  39. Souza PS, Vasconcelos FC, De Souza Reis FR, Nestal De Moraes G, Maia RC (2011) P-glycoprotein and survivin simultaneously regulate vincristine-induced apoptosis in chronic myeloid leukemia cells. Int J Oncol 39:925–933

    PubMed  Google Scholar 

  40. Takahashi T, Honma Y, Miyake T et al (2015) Synergistic combination therapy with cotylenin A and vincristine in multiple myeloma models. Int J Oncol 46:1801–1809

    Article  CAS  PubMed  Google Scholar 

  41. Li F, Ambrosini G, Chu EY et al (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584

    Article  CAS  PubMed  Google Scholar 

  42. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  43. Springer JE, Azbill RD, Knapp PE (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5:943–946

    Article  CAS  PubMed  Google Scholar 

  44. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  CAS  PubMed  Google Scholar 

  45. Milner AE, Palmer DH, Hodgkin EA et al (2002) Induction of apoptosis by chemotherapeutic drugs: the role of FADD in activation of caspase-8 and synergy with death receptor ligands in ovarian carcinoma cells. Cell Death Differ 9:287–300

    Article  CAS  PubMed  Google Scholar 

  46. Okun I, Balakin KV, Tkachenko SE, Ivachtchenko AV (2008) Caspase activity modulators as anticancer agents. Anticancer Agents Med Chem 8:322–341

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Jin DY, Wong HL, Feng H, Wong YC, Tsao SW (2003) MAD2-induced sensitization to vincristine is associated with mitotic arrest and Raf/Bcl-2 phosphorylation in nasopharyngeal carcinoma cells. Oncogene 22:109–116

    Article  CAS  PubMed  Google Scholar 

  48. Yam CH, Fung TK, Poon RY (2002) Cyclin A in cell cycle control and cancer. Cell Mol Life Sci 59:1317–1326

    Article  CAS  PubMed  Google Scholar 

  49. Henglein B, Chenivesse X, Wang J, Eick D, Brechot C (1994) Structure and cell cycle-regulated transcription of the human cyclin A gene. Proc Natl Acad Sci U S A 91:5490–5494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eskerod O (1994) Gastrointestinal tolerance studies on tolfenamic acid in humans and animals. Pharmacol Toxicol 75(Suppl 2):44–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partially supported by HyundaiHopeOnWheels Young Investigator Grant awarded to AR. RB is supported by National Institute for Minority Health and Health Disparities (Grant # 2U54 MD006882-06) and SR is supported by a grant from the Rutledge Cancer Foundation. Authors thank Childhood Cancer Repository at the Texas Tech University Health Sciences Center in Lubbock, TX for providing Ewing sarcoma cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyaz Basha.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 375 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelake, S., Sankpal, U.T., Eslin, D. et al. Clotam enhances anti-proliferative effect of vincristine in Ewing sarcoma cells. Apoptosis 24, 21–32 (2019). https://doi.org/10.1007/s10495-018-1508-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1508-1

Keywords

Navigation