Skip to main content

Advertisement

Log in

PPPDE1 promotes hepatocellular carcinoma development by negatively regulate p53 and apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We have previously identified that PPPDE1 is a deubiquitinase (DUB) belonging to a cysteine isopeptidase family. Here we sought to explore the biological significance of PPPDE1 in hepatocellular carcinoma and its underlying molecular mechanism. In the present study, we found that amplification and overexpression of PPPDE1 were associated with poor prognosis in hepatocellular carcinoma (HCC). We also demonstrated that knocking down of PPPDE1 could significantly block the clonal growth and tumorigenicity of human HCC cells, which revealed a critical role for PPPDE1 in HCC development. Furthermore, we proved that PPPDE1 is a key modulator of p53 protein level and its down stream apoptosis pathway. Taken together, these results suggested that PPPDE1 is a putative HCC driver gene and extensive studies should be conducted in the future to investigate the role of PPPDE1 in HCC and other tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DUBs:

Deubiquitinating enzymes

PPPDE:

After Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA 65:87–108

    PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    Article  CAS  PubMed  Google Scholar 

  4. Cheng W, Su Y, Xu F (2013) CHD1L: a novel oncogene. Mol Cancer 12:170

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu L, Dai Y, Chen J et al (2014) Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition by way of Akt/GSK-3beta/Snail signaling. Hepatology 59:531–543

    Article  CAS  PubMed  Google Scholar 

  6. Wang K, Lim HY, Shi S et al (2013) Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58:706–717

    Article  CAS  PubMed  Google Scholar 

  7. Xie X, Wang X, Jiang D et al (2017) PPPDE1 is a novel deubiquitinase belonging to a cysteine isopeptidase family. Biochem Biophys Res Commun 488:291–296

    Article  CAS  PubMed  Google Scholar 

  8. Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ (2007) The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 104:8869–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakada S, Tai I, Panier S et al (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466:941–946

    Article  CAS  PubMed  Google Scholar 

  10. Schwickart M, Huang X, Lill JR et al (2010) Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 463:103–107

    Article  CAS  PubMed  Google Scholar 

  11. Singh N, Singh AB (2016) Deubiquitinases and cancer: a snapshot. Crit Rev Oncol Hematol 103:22–26

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sippl W, Collura V, Colland F (2011) Ubiquitin-specific proteases as cancer drug targets. Future Oncol 7:619–632

    Article  CAS  PubMed  Google Scholar 

  13. Devine T, Dai MS (2013) Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des 19:3248–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim KH, Baek KH (2013) Deubiquitinating enzymes as therapeutic targets in cancer. Curr Pharm Des 19:4039–4052

    Article  CAS  PubMed  Google Scholar 

  15. Nanduri B, Suvarnapunya AE, Venkatesan M, Edelmann MJ (2013) Deubiquitinating enzymes as promising drug targets for infectious diseases. Curr Pharm Des 19:3234–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson JT, Thorvaldsdottir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campeau E, Ruhl VE, Rodier F et al (2009) A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4:e6529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Warner JR, McIntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen D, Zhang Z, Li M et al (2007) Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26:5029–5037

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Y, Poyurovsky MV, Li Y et al (2009) Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 35:316–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu CT, Lin TY, Hsu HY, Sheu F, Ho CM, Chen EI (2011) Ling Zhi-8 mediates p53-dependent growth arrest of lung cancer cells proliferation via the ribosomal protein S7-MDM2-p53 pathway. Carcinogenesis 32:1890–1896

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Tong D, Liu F et al (2016) RPS7 inhibits colorectal cancer growth via decreasing HIF-1alpha-mediated glycolysis. Oncotarget 7:5800–5814

    PubMed  Google Scholar 

  24. Wang Z, Hou J, Lu L et al (2013) Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS ONE 8:e79117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujimoto A, Furuta M, Totoki Y et al (2016) Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet 48:500–509

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81201569, No. 81541151), the Beijing Natural Science Foundation (No. 7132186) and the National Key Sci-Tech Special Project of China (No. 2018ZX10302207, No. 2017ZX10203202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Hongsong Chen.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Wang, X., Liao, W. et al. PPPDE1 promotes hepatocellular carcinoma development by negatively regulate p53 and apoptosis. Apoptosis 24, 135–144 (2019). https://doi.org/10.1007/s10495-018-1491-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1491-6

Keywords

Navigation