Skip to main content

Advertisement

Log in

Dynamic changes and molecular analysis of cell death in the spinal cord of SJL mice infected with the BeAn strain of Theiler’s murine encephalomyelitis virus

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Theiler’s murine encephalomyelitis (TME) is caused by the TME virus (TMEV) and represents an important animal model for multiple sclerosis (MS). Oligodendroglial apoptosis and reduced apoptotic elimination of encephalitogenic leukocytes seem to participate in autoimmune demyelination in MS. The present study quantified apoptotic cells in BeAn–TMEV-induced spinal cord white matter lesions at 14, 42, 98, and 196 days post infection (dpi) using immunostaining. Apoptotic cells were identified by transmission electron microscopy and double-immunofluorescence. The mRNA expression of apoptosis-related genes was investigated using microarray analysis. Oligodendroglial apoptosis was already detected in the predemyelinating phase at 14 dpi. Apoptotic cell numbers peaked at 42 dpi and decreased until 196 dpi partly due to reduced T cell apoptosis. In addition to genes involved in the classical pathways of apoptosis induction, microarray analysis detected the expression of genes related to alternative mechanisms of cell death such as pyroptosis, necroptosis, and endoplasmic reticulum stress. Consequently, oligodendroglial apoptosis is involved in the initiation of the TME demyelination process, whereas the development of apoptosis resistance of T cells potentially favors the maintenance of inflammation and myelin loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baranzini SE, Mudge J, van Velkinburgh JC et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosche B, Kieseier B, Hartung HP, Hemmer B (2003) [New understanding of the immunopathogenesis of multiple sclerosis]. Der Nervenarzt 74:654–663

    Article  CAS  PubMed  Google Scholar 

  3. Hänninen A (2017) Infections in MS: an innate immunity perspective. Acta Neurol Scand 136(Suppl 201):10–14

    Article  PubMed  Google Scholar 

  4. Brown C (2016) Aetiology: neighbourhood watch. Nature 540:S4-S6

    Article  PubMed  Google Scholar 

  5. Ruprecht K, Wildemann B, Jarius S (2017) Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol. https://doi.org/10.1007/s00415-017-8656-z

  6. Mentis AA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM (2017) Viruses and multiple sclerosis: from mechanisms and pathways to translational research opportunities. Mol Neurobiol 54:3911–3923

    Article  CAS  PubMed  Google Scholar 

  7. Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD (2004) Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 17:174–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aubert C, Brahic M (1995) Early infection of the central nervous system by the GDVII and DA strains of Theiler’s virus. J Virol 69:3197–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mecha M, Carrillo-Salinas FJ, Mestre L, Feliu A, Guaza C (2013) Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog Neurobiol 101–102:46–64

    Article  PubMed  Google Scholar 

  10. Tsunoda I, Fujinami RS (2010) Neuropathogenesis of Theiler’s murine encephalomyelitis virus infection, an animal model for multiple sclerosis. J Neuroimmune Pharmacol 5:355–369

    Article  PubMed  Google Scholar 

  11. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    Article  CAS  PubMed  Google Scholar 

  12. Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308

    Article  PubMed  Google Scholar 

  13. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    Article  PubMed  Google Scholar 

  14. Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753

    Article  PubMed  Google Scholar 

  15. Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW (2006) The pathologic role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating disease: implications for multiple sclerosis. J Neuroimmunol 174:21–31

    Article  CAS  PubMed  Google Scholar 

  16. Tsunoda I, Kurtz CI, Fujinami RS (1997) Apoptosis in acute and chronic central nervous system disease induced by Theiler’s murine encephalomyelitis virus. Virology 228:388–393

    Article  CAS  PubMed  Google Scholar 

  17. Tsunoda I, Libbey JE, Fujinami RS (2007) TGF-beta1 suppresses T cell infiltration and VP2 puff B mutation enhances apoptosis in acute polioencephalitis induced by Theiler’s virus. J Neuroimmunol 190:80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Artemiadis AK, Anagnostouli MC (2010) Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple sclerosis: possible role for the early stages of multiple sclerosis. Eur Neurol 63:65–72

    Article  CAS  PubMed  Google Scholar 

  19. Hebb AL, Moore CS, Bhan V et al (2008) Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination. Mult Scler 14:577–594

    Article  CAS  PubMed  Google Scholar 

  20. Oleszak EL, Hoffman BE, Chang JR et al (2003) Apoptosis of infiltrating T cells in the central nervous system of mice infected with Theiler’s murine encephalomyelitis virus. Virology 315:110–123

    Article  CAS  PubMed  Google Scholar 

  21. Seidi OA, Sharief MK (2002) The expression of apoptosis-regulatory proteins in B lymphocytes from patients with multiple sclerosis. J Neuroimmunol 130:202–210

    Article  CAS  PubMed  Google Scholar 

  22. Semra YK, Seidi OA, Sharief MK (2001) Overexpression of the apoptosis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 113:268–274

    Article  CAS  PubMed  Google Scholar 

  23. Sharief MK, Matthews H, Noori MA (2003) Expression ratios of the Bcl-2 family proteins and disease activity in multiple sclerosis. J Neuroimmunol 134:158–165

    Article  CAS  PubMed  Google Scholar 

  24. Sharief MK, Noori MA, Douglas MR, Semra YK (2002) Upregulated survivin expression in activated T lymphocytes correlates with disease activity in multiple sclerosis. Eur J Neurol 9:503–510

    Article  CAS  PubMed  Google Scholar 

  25. Sharief MK, Semra YK (2001) Heightened expression of survivin in activated T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 119:358–364

    Article  CAS  PubMed  Google Scholar 

  26. Sharief MK, Semra YK (2001) Upregulation of the inhibitor of apoptosis proteins in activated T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 119:350–357

    Article  CAS  PubMed  Google Scholar 

  27. Waiczies S, Weber A, Lunemann JD, Aktas O, Zschenderlein R, Zipp F (2002) Elevated Bcl-X(L) levels correlate with T cell survival in multiple sclerosis. J Neuroimmunol 126:213–220

    Article  CAS  PubMed  Google Scholar 

  28. Zettl UK, Kuhlmann T, Bruck W (1998) Bcl-2 expressing T lymphocytes in multiple sclerosis lesions. Neuropathol Appl Neurobiol 24:202–208

    Article  CAS  PubMed  Google Scholar 

  29. Zipp F (2000) Apoptosis in multiple sclerosis. Cell Tissue Res 301:163–171

    Article  CAS  PubMed  Google Scholar 

  30. Schlitt BP, Felrice M, Jelachich ML, Lipton HL (2003) Apoptotic cells, including macrophages, are prominent in Theiler’s virus-induced inflammatory, demyelinating lesions. J Virol 77:4383–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ulrich R, Baumgärtner W, Gerhauser I et al (2006) MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J Neuropathol Exp Neurol 65:783–793

    Article  CAS  PubMed  Google Scholar 

  32. Gerhauser I, Alldinger S, Baumgärtner W (2007) Ets-1 represents a pivotal transcription factor for viral clearance, inflammation, and demyelination in a mouse model of multiple sclerosis. J Neuroimmunol 188:86–94

    Article  CAS  PubMed  Google Scholar 

  33. Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W (2010) Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434–448

    Article  CAS  PubMed  Google Scholar 

  34. Kummerfeld M, Meens J, Haas L, Baumgärtner W, Beineke A (2009) Generation and characterization of a polyclonal antibody for the detection of Theiler’s murine encephalomyelitis virus by light and electron microscopy. J Virol Methods 160:185–188

    Article  CAS  PubMed  Google Scholar 

  35. Ofengeim D, Ito Y, Najafov A et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Ren Z, Tao D, Tilwalli S, Goswami R, Balabanov R (2010) STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia 58:195–208

    Article  PubMed  Google Scholar 

  37. Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  38. Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W (2008) Limited remyelination in Theiler’s murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603–620

    Article  CAS  PubMed  Google Scholar 

  39. Herder V, Iskandar CD, Kegler K et al (2015) Dynamic changes of microglia/macrophage M1 and M2 polarization in Theiler’s murine encephalomyelitis. Brain Pathol 25:712–723

    Article  CAS  PubMed  Google Scholar 

  40. Clarke P, Tyler KL (2009) Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol 7:144–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sato F, Martinez NE, Stewart EC, Omura S, Alexander JS, Tsunoda I (2015) “Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the Inside-Out model. BMC Neurol 15:219

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90

    Article  CAS  PubMed  Google Scholar 

  43. Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Ann Rev Immunol 26:389–420

    Article  CAS  Google Scholar 

  44. Chwieralski CE, Welte T, Buhling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149

    Article  CAS  PubMed  Google Scholar 

  45. de Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab 34:369–375

    Article  PubMed  PubMed Central  Google Scholar 

  46. Said-Sadier N, Ojcius DM (2012) Alarmins, inflammasomes and immunity. Biomed J 35:437–449

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    Article  CAS  PubMed  Google Scholar 

  48. Jacobs SR, Damania B (2012) NLRs, inflammasomes, and viral infection. J Leukoc Biol 92:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Labzin LI, Lauterbach MA, Latz E (2016) Interferons and inflammasomes: cooperation and counterregulation in disease. J Allergy Clin Immunol 138:37–46

    Article  CAS  PubMed  Google Scholar 

  50. Ming X, Li W, Maeda Y et al (2002) Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J Neurol Sci 197:9–18

    Article  CAS  PubMed  Google Scholar 

  51. Furlan R, Filippi M, Bergami A et al (1999) Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry 67:785–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shaw PJ, Lukens JR, Burns S, Chi H, McGargill MA, Kanneganti TD (2010) Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol 184:4610–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandes-Alnemri T, Wu J, Yu JW et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Labbe K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15:1339–1349

    Article  CAS  PubMed  Google Scholar 

  57. Son KN, Lipton HL (2015) Inhibition of Theiler’s virus-induced apoptosis in infected murine macrophages results in necroptosis. Virus Res 195:177–182

    Article  CAS  PubMed  Google Scholar 

  58. Buntinx M, Moreels M, Vandenabeele F et al (2004) Cytokine-induced cell death in human oligodendroglial cell lines: I. Synergistic effects of IFN-gamma and TNF-alpha on apoptosis. J Neurosci Res 76:834–845

    Article  CAS  PubMed  Google Scholar 

  59. Loda E, Balabanov R (2012) Interferon regulatory factor 1 regulation of oligodendrocyte injury and inflammatory demyelination. Rev Neurosci 23:145–152

    Article  CAS  PubMed  Google Scholar 

  60. Pouly S, Becher B, Blain M, Antel JP (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59:280–286

    Article  CAS  PubMed  Google Scholar 

  61. Vartanian T, Li Y, Zhao M, Stefansson K (1995) Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1:732–743

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bourdon JC, Renzing J, Robertson PL, Fernandes KN, Lane DP (2002) Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol 158:235–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meir O, Dvash E, Werman A, Rubinstein M (2010) C/EBP-beta regulates endoplasmic reticulum stress-triggered cell death in mouse and human models. PLoS ONE 5:e9516

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of double-stranded RNA-dependent protein kinase in ER stress-induced retinal neuron damage. Invest Ophthalmol Vis Sci 48:3729–3736

    Article  PubMed  Google Scholar 

  65. Tomasini R, Samir AA, Vaccaro MI et al (2001) Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death. J Biol Chem 276:44185–44192

    Article  CAS  PubMed  Google Scholar 

  66. Camicia R, Bachmann SB, Winkler HC et al (2013) BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNgamma-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma. J Cell Sci 126:1969–1980

    Article  CAS  PubMed  Google Scholar 

  67. Cho SH, Goenka S, Henttinen T et al (2009) PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113:2416–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ge B, Li O, Wilder P, Rizzino A, McKeithan TW (2003) NF-kappa B regulates BCL3 transcription in T lymphocytes through an intronic enhancer. J Immunol 171:4210–4218

    Article  CAS  PubMed  Google Scholar 

  69. Haanstra KG, Dijkman K, Bashir N et al (2015) Selective blockade of CD28-mediated T cell costimulation protects rhesus monkeys against acute fatal experimental autoimmune encephalomyelitis. J Immunol 194:1454–1466

    Article  CAS  PubMed  Google Scholar 

  70. Li H, Park D, Abdul-Muneer PM et al (2013) PI3Kgamma inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience 253:89–99

    Article  CAS  PubMed  Google Scholar 

  71. Michel L, Berthelot L, Pettre S et al (2008) Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J Clin Invest 118:3411–3419

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Polachini CR, Spanevello RM, Casali EA et al (2014) Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis. Neuroscience 266:266–274

    Article  CAS  PubMed  Google Scholar 

  73. Lundmark F, Duvefelt K, Hillert J (2007) Genetic association analysis of the interleukin 7 gene (IL7) in multiple sclerosis. J Neuroimmunol 192:171–173

    Article  CAS  PubMed  Google Scholar 

  74. Lawson BR, Gonzalez-Quintial R, Eleftheriadis T et al (2015) Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation. Clin Immunol 161:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones RG, Elford AR, Parsons MJ et al (2002) CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J Exp Med 196:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tabi Z, McCombe PA, Pender MP (1994) Apoptotic elimination of V beta 8.2 + cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of V beta 8.2+ encephalitogenic T cells. Eur J Immunol 24:2609–2617

    Article  CAS  PubMed  Google Scholar 

  77. Hebb AL, Moore CS, Bhan V, Robertson GS (2008) Targeting apoptosis to treat multiple sclerosis. Curr Drug Discov Technol 5:75–77

    Article  CAS  PubMed  Google Scholar 

  78. Sharief MK, Semra YK, Seidi OA, Zoukos Y (2001) Interferon-beta therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol 120:199–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Bettina Buck, Petra Grünig, Claudia Herrmann, Kerstin Rohn, Kerstin Schöne, Caroline Schütz, and Danuta Waschke for their excellent technical assistance. Lin Li (File No. 201206170042) and Dandan Li (File No. 201606170128) were supported by grants from the China Scholarship Council. This study was supported by the Deutsche Forschungsgemeinschaft (DFG, BE 4200/3-1) and in part by the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Beineke.

Ethics declarations

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Ingo Gerhauser, Lin Li, Dandan Li, Reiner Ulrich and Andreas Beineke have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29160 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerhauser, I., Li, L., Li, D. et al. Dynamic changes and molecular analysis of cell death in the spinal cord of SJL mice infected with the BeAn strain of Theiler’s murine encephalomyelitis virus. Apoptosis 23, 170–186 (2018). https://doi.org/10.1007/s10495-018-1448-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1448-9

Keywords

Navigation