Skip to main content
Log in

Autophagy inhibits high glucose induced cardiac microvascular endothelial cells apoptosis by mTOR signal pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cardiac microvascular endothelial cells (CMECs) dysfunction is an important pathophysiological event in the cardiovascular complications induced by diabetes. However, the underlying mechanism is not fully clarified. Autophagy is involved in programmed cell death. Here we investigated the potential role of autophagy on the CMECs injury induced by high glucose. CMECs were cultured in normal or high glucose medium for 6, 12 and 24 h respectively. The autophagy of CMECs was measured by green fluorescence protein (GFP)-LC3 plasmid transfection. Moreover, the apoptosis of CMEC was determined by flow cytometry. Furthermore, 3-Methyladenine (3MA), ATG7 siRNA and rapamycin were administrated to regulate the autophagy state. Moreover, Western blotting assay was performed to measure the expressions of Akt, mTOR, LC3 and p62. High glucose stress decreased the autophagy, whereas increased the apoptosis in CMECs time dependently. Meanwhile, high glucose stress activated the Akt/mTOR signal pathway. Furthermore, autophagy inhibitor, 3-MA and ATG7 siRNA impaired the autophagy and increased the apoptosis in CMECs induced by high glucose stress. Conversely, rapamycin up-regulated the autophagy and decreased the apoptosis in CMECs under high glucose condition. Our data provide evidence that high glucose directly inhibits autophagy, as a beneficial adaptive response to protect CMECs against apoptosis. Furthermore, the autophagy was mediated, at least in part, by mTOR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  2. Mazzone T (2010) Intensive glucose lowering and cardiovascular disease prevention in diabetes: reconciling the recent clinical trial data. Circulation 122:2201–2211

    Article  PubMed  PubMed Central  Google Scholar 

  3. Angeja BG, de Lemos J, Murphy SA, Marble SJ, Antman EM, Cannon CP et al (2002) Impact of diabetes mellitus on epicardial and microvascular flow after fibrinolytic therapy. Am Heart J 144:649–656

    Article  PubMed  Google Scholar 

  4. Liu Y, Ma Y, Wang R, Xia C, Zhang R, Lian K et al (2011) Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells. Antioxid Redox Signal 15:1769–1778

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Z, Li W, Sun D, Zhao L, Zhang R, Wang Y et al (2011) Toll-like receptor 4 signaling in dysfunction of cardiac microvascular endothelial cells under hypoxia/reoxygenation. Inflamm Res 60:37–45

    Article  CAS  PubMed  Google Scholar 

  6. Peng C, Ma J, Gao X, Tian P, Li W, Zhang L (2013) High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a. PLoS ONE 8:e79739

    Article  PubMed  PubMed Central  Google Scholar 

  7. Takagi H, Matsui Y, Sadoshima J (2007) The role of autophagy in mediating cell survival and death during ischemia and reperfusion in the heart. Antioxid Redox Signal 9:1373–1381

    Article  CAS  PubMed  Google Scholar 

  8. Terman A, Brunk UT (2005) Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc Res 68:355–365

    Article  CAS  PubMed  Google Scholar 

  9. Castino R, Isidoro C, Murphy D (2005) Autophagy-dependent cell survival and cell death in an autosomal dominant familial neurohypophyseal diabetes insipidus in vitro model. FASEB J 19:1024–1026

    CAS  PubMed  Google Scholar 

  10. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim KH, Lee MS. (2013). Autophagy as a crosstalk mediator of metabolic organs in regulation of energy metabolism. Rev Endocr Metab Disord

  12. Liu Y, Chen Y, Wen L, Cui G (2012) Molecular mechanisms underlying the time-dependent autophagy and apoptosis induced by nutrient depletion in multiple myeloma: a pilot study. J Huazhong Univ Sci Technol Med Sci 32:1–8

    Article  PubMed  Google Scholar 

  13. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  14. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5:824–834

    Article  CAS  PubMed  Google Scholar 

  16. Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR (2008) Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci 15:912–920

    Article  CAS  PubMed  Google Scholar 

  17. Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods Mol Biol 445:77–88

    Article  CAS  PubMed  Google Scholar 

  18. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518

    Article  CAS  PubMed  Google Scholar 

  19. Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3:106–116

    Article  CAS  PubMed  Google Scholar 

  20. Yordy B, Tal MC, Hayashi K, Arojo O, Iwasaki A (2013) Autophagy and selective deployment of Atg proteins in antiviral defense. Int Immunol 25:1–10

    Article  CAS  PubMed  Google Scholar 

  21. Jaakkola PM, Pursiheimo JP (2009) p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy 5:410–412

    Article  CAS  PubMed  Google Scholar 

  22. Rusten TE, Stenmark H (2010) p62, an autophagy hero or culprit? Nat Cell Biol 12:207–209

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Hueckstaedt LK, Ren J (2013) Deficiency of insulin-like growth factor 1 attenuates aging-induced changes in hepatic function: role of autophagy. J Hepatol 59:308–317

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi S, Xu X, Chen K, Liang Q (2012) Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8:577–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X et al (2013) Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res Cardiol 108:333

    Article  PubMed  Google Scholar 

  26. Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T et al (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879

    Article  CAS  PubMed  Google Scholar 

  27. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Casado P, Bilanges B, Rajeeve V, Vanhaesebroeck B, Cutillas PR (2014) Environmental stress affects the activity of metabolic and growth factor signaling networks and induces autophagy markers in MCF7 breast cancer cells. Mol Cell Proteomics 13(3):836–848

    Article  Google Scholar 

  29. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi R, Weng J, Zhao L, XM Li, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260

    Article  CAS  PubMed  Google Scholar 

  31. Wilson CM, Magnaudeix A, Yardin C, Terro F (2013) Autophagy dysfunction and its link to Alzheimer’s disease and type II diabetes mellitus. CNS Neurol Disord Drug Targets 13(2):226–246

    Google Scholar 

  32. Yamamoto S, Kazama JJ, Fukagawa M (2013) Autophagy: a two-edged sword in diabetes mellitus. Biochem J 456:e1–e3

    Article  CAS  PubMed  Google Scholar 

  33. Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA et al (2013) Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 19:1281–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM (2011) Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol 50:1035–1043.

    Article  CAS  PubMed  Google Scholar 

  35. Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27:4860–4864

    Article  CAS  PubMed  Google Scholar 

  36. Wang B, Ling S, Lin WC (2010) 14-3-3t regulates beclin 1 and is required for autophagy. PLoS ONE 5(4):e10409

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology 21:362–369

    Article  CAS  PubMed  Google Scholar 

  38. Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, Dreyfus F et al (2002) Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 21:6587–6597

    Article  CAS  PubMed  Google Scholar 

  39. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56

    Article  CAS  PubMed  Google Scholar 

  40. Xu N, Lao Y, Zhang Y, Gillespie DA (2012) Akt: a double-edged sword in cell proliferation and genome stability. J Oncol 2012:951724

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Xu X, Ren J (2013) MTOR overactivation and interrupted autophagy flux in obese hearts: a dicey assembly? Autophagy 9:939–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He C, Zhu H, Li H, Zou MH, Xie Z (2013) Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62:1270–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (No. 81400274).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunguang Qiu or Taohong Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Zheng Zhang, Shenwei Zhang, Yong Wang, and Ming Yang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2017_1398_MOESM1_ESM.tif

Supplementary material 1 HG induced apoptosis via caspase way. A: Representative TUNEL staining imaging of CMECs in each group. B: Quantification of the apoptotic CMECs (n=3, *p < 0.05). C: Representative Western blots of cleaved caspase-3 in each group. D: Quantitative analysis of the expressions of cleaved caspase-3/β actin. (TIF 1619 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, S., Wang, Y. et al. Autophagy inhibits high glucose induced cardiac microvascular endothelial cells apoptosis by mTOR signal pathway. Apoptosis 22, 1510–1523 (2017). https://doi.org/10.1007/s10495-017-1398-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1398-7

Keywords

Navigation