Skip to main content

Advertisement

Log in

Adiponectin exerts cardioprotection against ischemia/reperfusion injury partially via calreticulin mediated anti-apoptotic and anti-oxidative actions

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The underlying mechanisms of cardioprotection of adiponectin (APN) against ischemia/reperfusion (I/R) injury remain largely unknown. The present study aimed to investigate whether calreticulin (CRT) mediated APN’s cardioprotection against I/R injury. We inhibited mice cardiac CRT expression via intra-myocardial injection of CRT SiRNA, performed transient LAD ligation, measured the cardiac function, apoptosis and oxidative stress to identify CRT’s effects on cardioprotective actions of APN against I/R injury in vivo. LDH release and expression of CRT were measured in neonatal cardiomyocytes (NCM) subjected to simulated I/R (SI/R) and APN. CRT specific SiRNA was also utilized in vitro. CRT inhibition partially blunted cardioprotection of APN against I/R injury (evidenced by left ventricular ejection fraction and myocardial infarct size). It also blunted APN’s function against I/R induced apoptosis and oxidative stress (evidenced by TUNEL positive staining and reactive oxygen species production). In addition, SI/R increased LDH release, and administration of APN attenuated SI/R-induced cell death significantly. However, neither SI/R nor APN altered CRT expression in NCM. Inhibition of CRT expression blunted cardioprotective action of APN against SI/R induced apoptotic events (evidenced by TUNEL positive staining, LDH release and Caspase 3 activity). Furthermore, CRT inhibition significantly blunted APN’s anti-oxidative action (evidenced by gp91phox expression and superoxide generation). However, CRT inhibition did not attenuate AMPK phosphorylation by APN administration in NCM. Therefore, these novel findings strongly indicate that APN exerts cardioprotective effects against I/R injury partially via CRT mediated anti-apoptotic and anti-oxidative actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM et al (2011) Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    Article  PubMed  Google Scholar 

  2. Goldstein BJ, Scalia RG, Ma XL (2009) Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med 6:27–35

    Article  CAS  PubMed  Google Scholar 

  3. Basu R, Pajvani UB, Rizza RA, Scherer PE (2007) Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes 56:2174–2177

    Article  CAS  PubMed  Google Scholar 

  4. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K et al (2005) Adiponectin protects against myocardial ischemia–reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11:1096–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA et al (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115:1408–1416

    Article  CAS  PubMed  Google Scholar 

  6. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Article  CAS  PubMed  Google Scholar 

  7. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  CAS  PubMed  Google Scholar 

  8. Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR et al (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 10:1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS et al (2007) Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Invest 117:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA 101:10308–10313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P, Ranscht B (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120:4342–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Gao E, Tao L, Lau WB, Yuan Y, Goldstein BJ et al (2009) AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 119:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q et al (2011) Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. Antioxid Redox Signal 15:1779–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH et al (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 17:55–63

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Wang X, Jasmin JF, Lau WB, Li R, Yuan Y et al (2012) Essential role of caveolin-3 in adiponectin signalsome formation and adiponectin cardioprotection. Arterioscler Thromb Vasc Biol 32:934–942

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Lau WB, Gao E, Tao L, Yuan Y, Li R et al (2010) Cardiomyocyte-derived adiponectin is biologically active in protecting against myocardial ischemia–reperfusion injury. Am J Physiol Endocrinol Metab 298:E663–E670

    Article  CAS  PubMed  Google Scholar 

  17. Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford ML et al (2010) The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocrinol Metab 299:E695–E705

    Article  CAS  PubMed  Google Scholar 

  18. Yi W, Sun Y, Yuan Y, Lau WB, Zheng Q, Wang X et al (2012) C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation 125:3159–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang H, Hou H, Yi W, Yang G, Gu C, Lau WB et al (2011) Increased expression of pigment epithelium-derived factor in aged mesenchymal stem cells impairs their therapeutic efficacy for attenuating myocardial infarction injury. Eur Heart J 34:1681–1690

    Article  PubMed  PubMed Central  Google Scholar 

  20. Michalak M, Guo L, Robertson M, Lozak M, Opas M (2004) Calreticulin in the heart. Mol Cell Biochem 263:137–142

    Article  CAS  Google Scholar 

  21. Maass A, Leinwand LA (2001) A role for calreticulin in the adult heart? J Clin Invest 107:1223–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986

    Article  CAS  PubMed  Google Scholar 

  23. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  CAS  PubMed  Google Scholar 

  24. White TK, Zhu Q, Tanzer ML (1995) Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. J Biol Chem 270:15926–15929

    Article  CAS  PubMed  Google Scholar 

  25. Arosa FA, de Jesus O, Porto G, Carmo AM, de Sousa M (1999) Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem 274:16917–16922

    Article  CAS  PubMed  Google Scholar 

  26. Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM et al (2010) Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 24:665–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tarr J, Eggleton P (2005) Immune function of C1q and its modulators CD91 and CD93. Crit Rev Immunol 25:305–330

    Article  CAS  PubMed  Google Scholar 

  28. Ohashi K, Ouchi N, Sato K, Higuchi A, Ishikawa TO, Herschman HR et al (2009) Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism. Mol Cell Biol 29:3487–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gold LI, Rahman M, Blechman KM, Greives MR, Churgin S, Michaels J et al (2006) Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects. J Investig Dermatol Symp Proc 11:57–65

    Article  CAS  PubMed  Google Scholar 

  30. Nanney LB, Woodrell CD, Greives MR, Cardwell NL, Pollins AC, Bancroft TA et al (2008) Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol 173:610–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maruyama S, Shibata R, Ohashi K, Ohashi T, Daida H, Walsh K et al (2011) Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. J Biol Chem 286:32790–32800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Papp S, Fadel MP, Kim H, McCulloch CA, Opas M (2007) Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. J Biol Chem 282:16585–16598

    Article  CAS  PubMed  Google Scholar 

  33. Papp S, Szabo E, Kim H, McCulloch CA, Opas M (2008) Kinase-dependent adhesion to fibronectin: regulation by calreticulin. Exp Cell Res 314:1313–1326

    Article  CAS  PubMed  Google Scholar 

  34. Zimmerman KA, Graham LV, Pallero MA, Murphy-Ullrich JE (2013) Calreticulin regulates transforming growth factor-beta-stimulated extracellular matrix production. J Biol Chem 288:14584–14598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116:2809–2817

    Article  CAS  PubMed  Google Scholar 

  36. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  CAS  PubMed  Google Scholar 

  37. Skurk C, Wittchen F, Suckau L, Witt H, Noutsias M, Fechner H et al (2008) Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. Eur Heart J 29:1168–1180

    Article  CAS  PubMed  Google Scholar 

  38. Motoshima H, Wu X, Mahadev K, Goldstein BJ (2004) Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun 315:264–271

    Article  CAS  PubMed  Google Scholar 

  39. Ouedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K et al (2006) Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55:1840–1846

    Article  CAS  PubMed  Google Scholar 

  40. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8:731–737

    Article  CAS  PubMed  Google Scholar 

  41. Williams AS, Kasahara DI, Verbout NG, Fedulov AV, Zhu M, Si H et al (2012) Role of the adiponectin binding protein, T-cadherin (Cdh13), in allergic airways responses in mice. PLoS One 7:e41088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81422004, 81500263, 81470480, 81470477, 81100137, 81100081), China Postdoctoral Science Foundation (2015M572681), National High-tech R&D Program of China (2014AA020514, 2015AA020919), and Technological New Star Program of Shaanxi Province (2014KJXX-56).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yi or Feng Gao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Yang Sun, Dajun Zhao, Yang Yang and Chao Gao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2016_1304_MOESM1_ESM.tif

Supplementary material 1 Supplementary Figure 1. Stealth RNAi (20μl; 0.8μg/g) or negative scramble SiRNA were injected into each mouse’s intramyocardia. (A-B) Efficiency of CRT inhibition in vivo determined by representative western blot and RT-PCR. **P <0.01 vs. Scramble SiRNA group. N=6-8. (B) The viability of normal NCM subjected to the SiRNA was assessed by performing an MTT assay, and the viability was expressed as an OD value. N=6-8 (TIF 57035 KB)

10495_2016_1304_MOESM2_ESM.tif

Supplementary material 2 Supplementary Figure 2. CRT expression was determined by representative western blots. *P <0.05, **P <0.01 vs. Control group. N=6-8 (TIF 49885 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhao, D., Yang, Y. et al. Adiponectin exerts cardioprotection against ischemia/reperfusion injury partially via calreticulin mediated anti-apoptotic and anti-oxidative actions. Apoptosis 22, 108–117 (2017). https://doi.org/10.1007/s10495-016-1304-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1304-8

Keywords

Navigation