Skip to main content
Log in

Mapping of NRAGE domains reveals clues to cell viability in BMP signaling

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Bone morphogenetic signaling (BMP) is a key pathway during neurogenesis and depends on many downstream intermediators to carry out its signaling. One such signaling pathway utilizes neurotrophin receptor-interacting MAGE protein (NRAGE), a member of the melanoma-associated antigen (MAGE) family, to upregulate p38 mitogen activated protein kinase (p38MAPK) in response to cellular stress and activate caspases which are critical in leading cells to death. NRAGE consists of two conserved MAGE homology domains separated by a unique hexapeptide repeat domain. Although we have previously implicated NRAGE in inducing apoptosis in neural progenitors and P19 cells, a model system for neural progenitors, its domains have yet to be explored in determining which one may be responsible for setting up the signaling for apoptosis. Here, we overexpressed a series of deletion mutations in P19 cells to show that only those with at least half of the repeat domain, activated p38MAPK and underwent apoptosis offering intriguing incite into NRAGE’s contribution in BMP apoptotic signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Salehi AH, Roux PP, Kubu CJ et al (2000) NRAGE, A Novel MAGE Protein, Interacts with the p75 neurotrophin receptor and facilitates nerve growth factor dependent apoptosis. Neuron 27:279–288

    Article  CAS  PubMed  Google Scholar 

  2. Pold M, Zhou J, Chen GL, Hall JM, Vescio RA, Berenson JR (1999) Identification of a new, unorthodox member of the MAGE gene family. Genomics 59:161–167

    Article  CAS  PubMed  Google Scholar 

  3. Masuda Y, Sasaki A, Shibuya H, Ueno N, Ikeda K, Watanabe K (2001) Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. J Biol Chem 276:5331–5338

    Article  CAS  PubMed  Google Scholar 

  4. Xiao J, Chen HS (2004) Biological functions of melanoma-associated antigens. World J Gastroenterol 10:1849–1853

    CAS  PubMed  Google Scholar 

  5. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  CAS  PubMed  Google Scholar 

  6. Chu C, Xue B, Tu C et al (2007) NRAGE suppresses metastasis of melanoma and pancreatic cancer in vitro and in vivo. Cancer Lett 250:268–275

    Article  CAS  PubMed  Google Scholar 

  7. Wen C, Xue B, Qin W et al (2004) hNRAGE, a human neurotrophin receptor interacting MAGE homologue, regulates p53 transcriptional activity and inhibits cell proliferation. FEBS Lett 564:171–176

    Article  CAS  PubMed  Google Scholar 

  8. Salehi AH, Morris SJ, Ho WC et al (2006) AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem Biol 13:213–223

    Article  CAS  PubMed  Google Scholar 

  9. Salehi AH, Xanthoudakis S, Barker PA (2002) NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J Biol Chem 277:48043–48050

    Article  CAS  PubMed  Google Scholar 

  10. Kendall SE, Battelli C, Irwin S et al (2005) NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein signaling cascade. Mol Cell Biol 26:7711–7724

    Article  Google Scholar 

  11. Kendall SE, Goldhawk DE, Kubu C, Barker PA, Verdi JM (2002) Expression analysis of a novel p75NTR signaling protein, which regulates cell cycle progression and apoptosis. Mech Dev 117:187–200

    Article  CAS  PubMed  Google Scholar 

  12. Nakano I, Saiqusa K, Kornblum HI (2008) BMPing off glioma stem cells. Cancer Cell 13:3–4

    Article  CAS  PubMed  Google Scholar 

  13. Nikopoulos GN, Martins JF, Adams TL et al (2009) NRAGE: a potential rheostat during branching morphogenesis. Mech Dev 126:337–349

    Article  CAS  PubMed  Google Scholar 

  14. Jordan BWM, Dinev D, LeMellay V et al (2001) Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J Biol Chem 276:39985–39989

    Article  CAS  PubMed  Google Scholar 

  15. Barker PA, Salehi A (2002) The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J Neurosci Res 67:705–712

    Article  CAS  PubMed  Google Scholar 

  16. McBurney MW (1993) P19 embryonal carcinoma cells. Int J Dev Biol 37:135–140

    CAS  PubMed  Google Scholar 

  17. Tahara K, Mori M, Sadanaga N, Sakamoto Y, Kitano S, Makuuchi M (1999) Expression of the MAGE gene family in human hepatocellular carcinoma. Cancer 85:1234–1240

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761–30764

    CAS  PubMed  Google Scholar 

  19. Deveraux QL, Roy N, Stennicke HR et al (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    Article  CAS  PubMed  Google Scholar 

  20. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304

    Article  CAS  PubMed  Google Scholar 

  21. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337

    CAS  PubMed  Google Scholar 

  22. Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 275:17647–17652

    Article  CAS  PubMed  Google Scholar 

  23. Kozak M (1984) Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res 12:3873–3893

    Article  CAS  PubMed  Google Scholar 

  24. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grant R01NS055304 awarded to JMV and NIH Center of Biomedical Research Excellence (COBRE) P20RR018789 in Stem Cell Biology and Regenerative Medicine to Maine Medical Center (Portland, Maine). J.A.R. was funded by the Integrative Graduate Education Research Training (IGERT) Functional Genomics Ph.D. program through a fellowship from National Science Foundation grant 0221625 awarded to the University of Maine (Orono, Maine), Maine Medical Center Research Institute (Scarborough, Maine), and the Jackson Laboratory (Bar Harbor, Maine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Verdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rochira, J.A., Cowling, R.A., Himmelfarb, J.S. et al. Mapping of NRAGE domains reveals clues to cell viability in BMP signaling. Apoptosis 15, 63–70 (2010). https://doi.org/10.1007/s10495-009-0427-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0427-6

Keywords

Navigation