Skip to main content
Log in

By design or by chance: cell death during Drosophila embryogenesis

  • Apoptosis in Drosophila
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cell death plays an essential role during Drosophila embryogenesis. However, it remains an enigma as to what mechanisms determine (or select) the specific cells to be eliminated at a particular developmental stage. Is it mostly dependent on the lineage of the cell, signifying genetic predetermination, or is it due to the failure of a cell to compete for growth factors, which is more or less by chance? Recent developments in studying the molecular mechanism of cell death during Drosophila embryogenesis has provided much insight into our understanding of the relative importance of, and the interaction between, these two mechanisms in shaping the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Magrassi L, Lawrence PA (1988) The pattern of cell death in fushi tarazu, a segmentation gene of Drosophila. Development 104(3):447–451

    PubMed  CAS  Google Scholar 

  2. Smouse D, Goodman C, Mahowald A, Perrimon N (1988) Polyhomeotic: a gene required for the embryonic development of axon pathways in the central nervous system of Drosophila. Genes Dev 2(7):830–842. doi:10.1101/gad.2.7.830

    Article  PubMed  CAS  Google Scholar 

  3. Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117(1):29–43

    PubMed  CAS  Google Scholar 

  4. Pazdera TM, Janardhan P, Minden JS (1998) Patterned epidermal cell death in wild-type and segment polarity mutant Drosophila embryos. Development 125(17):3427–3436

    PubMed  CAS  Google Scholar 

  5. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264(5159):677–683. doi:10.1126/science.8171319

    Article  PubMed  CAS  Google Scholar 

  6. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708. doi:10.1101/gad.9.14.1694

    Article  PubMed  CAS  Google Scholar 

  7. Chen P, Nordstrom W, Gish B, Abrams JM (1996) grim, a novel cell death gene in Drosophila. Genes Dev 10:1773–1782. doi:10.1101/gad.10.14.1773

    Article  PubMed  CAS  Google Scholar 

  8. Christich A, Kauppila S, Chen P, Sogame N, Ho SI, Abrams JM (2002) The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr Biol 12(2):137–140. doi:10.1016/S0960-9822(01)00658-3

    Article  PubMed  CAS  Google Scholar 

  9. Srinivasula SM, Datta P, Kobayashi M, Wu JW, Fujioka M, Hegde R, Zhang Z, Mukattash R, Fernandes-Alnemri T, Shi Y, Jaynes JB, Alnemri ES (2002) Sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr Biol 12(2):125–130. doi:10.1016/S0960-9822(01)00657-1

    Article  PubMed  CAS  Google Scholar 

  10. Wing JP, Karres JS, Ogdahl JL, Zhou L, Schwartz LM, Nambu JR (2002) Drosophila sickle is a novel grim-reaper cell death activator. Curr Biol 12(2):131–135. doi:10.1016/S0960-9822(01)00664-9

    Article  PubMed  CAS  Google Scholar 

  11. Chandraratna D, Lawrence N, Welchman DP, Sanson B (2007) An in vivo model of apoptosis: linking cell behaviours and caspase substrates in embryos lacking DIAP1. J Cell Sci 120(Pt 15):2594–2608. doi:10.1242/jcs.03472

    Article  PubMed  CAS  Google Scholar 

  12. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19(4):589–597. doi:10.1093/emboj/19.4.589

    Article  PubMed  CAS  Google Scholar 

  13. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463. doi:10.1016/S0092-8674(00)81974-1

    Article  PubMed  CAS  Google Scholar 

  14. Quinn LM, Dorstyn L, Mills K, Colussi PA, Chen P, Coombe M, Abrams J, Kumar S, Richardson H (2000) An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J Biol Chem 275(51):40416–40424. doi:10.1074/jbc.M002935200

    Article  PubMed  CAS  Google Scholar 

  15. Xu D, Li Y, Arcaro M, Lackey M, Bergmann A (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132(9):2125–2134. doi:10.1242/dev.01790

    Article  PubMed  CAS  Google Scholar 

  16. Xu D, Wang Y, Willecke R, Chen Z, Ding T, Bergmann A (2006) The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 13(10):1697–1706. doi:10.1038/sj.cdd.4401920

    Article  PubMed  CAS  Google Scholar 

  17. Zhou L, Song Z, Tittel J, Steller H (1999) HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol Cell 4(5):745–755. doi:10.1016/S1097-2765(00)80385-8

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez A, Oliver H, Zou H, Chen P, Wang X, Abrams JM (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1(5):272–279. doi:10.1038/12984

    Article  PubMed  CAS  Google Scholar 

  19. Kanuka H, Sawamoto K, Inohara N, Matsuno K, Okano H, Miura M (1999) Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol Cell 4(5):757–769. doi:10.1016/S1097-2765(00)80386-X

    Article  PubMed  CAS  Google Scholar 

  20. Sonnenfeld MJ, Jacobs JR (1995) Apoptosis of the midline glia during Drosophila embryogenesis: a correlation with axon contact. Development 121(2):569–578

    PubMed  CAS  Google Scholar 

  21. Zhou L, Hashimi H, Schwartz LM, Nambu JR (1995) Programmed cell death in the Drosophila central nervous system midline. Curr Biol 5(7):784–790. doi:10.1016/S0960-9822(95)00155-2

    Article  PubMed  CAS  Google Scholar 

  22. Sonnenfeld MJ, Jacobs JR (1995) Macrophages and glia participate in the removal of apoptotic neurons from the Drosophila embryonic nervous system. J Comp Neurol 359(4):644–652. doi:10.1002/cne.903590410

    Article  PubMed  CAS  Google Scholar 

  23. Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120(7):1829–1837

    PubMed  CAS  Google Scholar 

  24. Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4(5):431–443. doi:10.1016/S1074-7613(00)80410-0

    Article  PubMed  CAS  Google Scholar 

  25. Franc NC, Heitzler P, Ezekowitz RAB, White K (1999) Requirement for Croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284(5422):1991–1994

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Y, Lin N, Carroll P, Chan G, Guan B, Xiao H, Yao B, Wu S, Zhou L (2008) Epigenetic blocking of an enhancer region controls irradiation-induced proapoptotic gene expression in Drosophila embryos. Dev Cell 14:481–493. doi:10.1016/j.devcel.2008.01.018

    Article  PubMed  CAS  Google Scholar 

  27. Karcavich R, Doe CQ (2005) Drosophila neuroblast 7–3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol 481(3):240–251. doi:10.1002/cne.20371

    Article  PubMed  Google Scholar 

  28. Rogulja-Ortmann A, Luer K, Seibert J, Rickert C, Technau GM (2007) Programmed cell death in the embryonic central nervous system of Drosophila melanogaster. Development 134(1):105–116. doi:10.1242/dev.02707

    Article  PubMed  CAS  Google Scholar 

  29. Bello BC, Hirth F, Gould AP (2003) A pulse of the Drosophila Hox protein abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37(2):209–219. doi:10.1016/S0896-6273(02)01181-9

    Article  PubMed  CAS  Google Scholar 

  30. Maurange C, Cheng L, Gould AP (2008) Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133(5):891–902. doi:10.1016/j.cell.2008.03.034

    Article  PubMed  CAS  Google Scholar 

  31. Toyama Y, Peralta XG, Wells AR, Kiehart DP, Edwards GS (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321(5896):1683–1686. doi:10.1126/science.1157052

    Article  PubMed  CAS  Google Scholar 

  32. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801. doi:10.1038/287795a0

    Article  PubMed  CAS  Google Scholar 

  33. Wolpert L (1994) Positional information and pattern formation in development. Dev Genet 15(6):485–490. doi:10.1002/dvg.1020150607

    Article  PubMed  CAS  Google Scholar 

  34. Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335(6185):25–34. doi:10.1038/335025a0

    Article  PubMed  CAS  Google Scholar 

  35. Lohmann I, McGinnis N, Bodmer M, McGinnis W (2002) The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110(4):457–466. doi:10.1016/S0092-8674(02)00871-1

    Article  PubMed  CAS  Google Scholar 

  36. Rogulja-Ortmann A, Renner S, Technau GM (2008) Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development 135(20):3435–3445

    Article  PubMed  CAS  Google Scholar 

  37. Raff MC (1992) Social controls on cell survival and cell death. Nature 356(6368):397–400

    Article  PubMed  CAS  Google Scholar 

  38. Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118(1):283–295

    PubMed  CAS  Google Scholar 

  39. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262(5134):695–700. doi:10.1126/science.8235590

    Article  PubMed  CAS  Google Scholar 

  40. Clifford R, Schupbach T (1992) The torpedo (DER) receptor tyrosine kinase is required at multiple times during Drosophila embryogenesis. Development 115(3):853–872

    PubMed  CAS  Google Scholar 

  41. Stemerdink C, Jacobs JR (1997) Argos and Spitz group genes function to regulate midline glial cell number in Drosophila embryos. Development 124(19):3787–3796

    PubMed  CAS  Google Scholar 

  42. Jacobs JR (2000) The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 62(5):475–508. doi:10.1016/S0301-0082(00)00016-2

    Article  PubMed  CAS  Google Scholar 

  43. Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95(3):331–341. doi:10.1016/S0092-8674(00)81765-1

    Article  PubMed  CAS  Google Scholar 

  44. Kurada P, White K (1998) Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95(3):319–329. doi:10.1016/S0092-8674(00)81764-X

    Article  PubMed  CAS  Google Scholar 

  45. Bergmann A, Tugentman M, Shilo BZ, Steller H (2002) Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2(2):159–170. doi:10.1016/S1534-5807(02)00116-8

    Article  PubMed  CAS  Google Scholar 

  46. Parker J (2006) Control of compartment size by an EGF ligand from neighboring cells. Curr Biol 16(20):2058–2065. doi:10.1016/j.cub.2006.08.092

    Article  PubMed  CAS  Google Scholar 

  47. Reuveny A, Elhanany H, Volk T (2009) Enhanced sensitivity of midline glial cells to apoptosis is achieved by HOW(L)-dependent repression of Diap1. Mech Dev 126(1–2):30–41. doi:10.1016/j.mod.2008.10.004

    Article  PubMed  CAS  Google Scholar 

  48. Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR (1997) Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci USA 94(10):5131–5136. doi:10.1073/pnas.94.10.5131

    Article  PubMed  CAS  Google Scholar 

  49. Jiang C, Baehrecke EH, Thummel CS (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124(22):4673–4683

    PubMed  CAS  Google Scholar 

  50. Yin VP, Thummel CS (2004) A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci USA 101(21):8022–8027. doi:10.1073/pnas.0402647101

    Article  PubMed  CAS  Google Scholar 

  51. Peterson C, Carney GE, Taylor BJ, White K (2002) Reaper is required for neuroblast apoptosis during Drosophila development. Development 129(6):1467–1476

    PubMed  CAS  Google Scholar 

  52. Wing JP, Schwartz LM, Nambu JR (2001) The RHG motifs of Drosophila Reaper and Grim are important for their distinct cell death-inducing abilities. Mech Dev 102(1–2):193–203. doi:10.1016/S0925-4773(01)00316-1

    Article  PubMed  CAS  Google Scholar 

  53. Zachariou A, Tenev T, Goyal L, Agapite J, Steller H, Meier P (2003) IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J 22(24):6642–6652. doi:10.1093/emboj/cdg617

    Article  PubMed  CAS  Google Scholar 

  54. Claveria C, Caminero E, Martinez AC, Campuzano S, Torres M (2002) GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J 21(13):3327–3336. doi:10.1093/emboj/cdf354

    Article  PubMed  CAS  Google Scholar 

  55. Claveria C, Martinez AC, Torres M (2004) A Bax/Bak-independent mitochondrial death pathway triggered by Drosophila Grim GH3 domain in mammalian cells. J Biol Chem 279(2):1368–1375. doi:10.1074/jbc.M309819200

    Article  PubMed  CAS  Google Scholar 

  56. Freel CD, Richardson DA, Thomenius MJ, Gan EC, Horn SR, Olson MR, Kornbluth S (2008) Mitochondrial localization of Reaper to promote inhibitors of apoptosis protein degradation conferred by GH3 domain-lipid interactions. J Biol Chem 283(1):367–379. doi:10.1074/jbc.M708931200

    Article  PubMed  CAS  Google Scholar 

  57. Olson MR, Holley CL, Gan EC, Colon-Ramos DA, Kaplan B, Kornbluth S (2003) A GH3-like domain in reaper required for mitochondrial localization and induction of IAP degradation. J Biol Chem 13:13

    Google Scholar 

  58. Engstrom PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B (2007) Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 17(12):1898–1908. doi:10.1101/gr.6669607

    Article  PubMed  CAS  Google Scholar 

  59. Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engstrom PG, Fredman D, Akalin A, Caccamo M, Sealy I, Howe K, Ghislain J, Pezeron G, Mourrain P, Ellingsen S, Oates AC, Thisse C, Thisse B, Foucher I, Adolf B, Geling A, Lenhard B, Becker TS (2007) Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res 17(5):545–555. doi:10.1101/gr.6086307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work is supported by NIH grants CA095542 and AI067555. The authors are grateful for the comments and suggestions provided by Dr. Bertrand Mollereau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, N., Zhang, C., Pang, J. et al. By design or by chance: cell death during Drosophila embryogenesis. Apoptosis 14, 935–942 (2009). https://doi.org/10.1007/s10495-009-0360-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0360-8

Keywords

Navigation