Skip to main content
Log in

A molecular mechanism for mimosine-induced apoptosis involving oxidative stress and mitochondrial activation

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mimosine, a non-protein amino acid, is mainly known for its action as a reversible inhibitor of DNA replication and, therefore, has been widely used as a cell cycle synchronizing agent. Recently, it has been shown that mimosine also induces apoptosis, as mainly reflected in its ability to elicit characteristic nuclear changes. The present study elucidates the mechanism underlying mimosine’s apoptotic effects, using the U-937 leukemia cell line. We now demonstrate that in isolated rat liver mitochondria, mimosine induces mitochondrial swelling that can be inhibited by cyclosporine A, indicative of permeability transition (PT) mega-channel opening. Mimosine-induced apoptosis was accompanied by formation of hydrogen peroxide and a decrease in reduced glutathione levels. The apoptotic process was partially inhibited by cyclosporine A and substantially blocked by the antioxidant N-acetylcysteine, suggesting an essential role for reactive oxygen species formation during the apoptotic processes. The apoptosis induced by mimosine was also accompanied by a decrease in mitochondrial membrane potential, cytochrome c release and caspase 3 and 9 activation. Our results thus imply that mimosine activates apoptosis through mitochondrial activation and formation of H2O2, both of which play functional roles in the induction of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kristen NSK, Vulliet P (1996) Mimosine blocks cell cycle progression by chelating iron in asynchronous human breast cancer cells. Toxic App Pharm 139:356–364

    Article  Google Scholar 

  2. Dewreede S, Wayman O (1970) Effect of mimosine on the rat fetus. Teratology 3:21–27

    Article  PubMed  CAS  Google Scholar 

  3. Kalejta RF, Hamlin JL (1997) The dual effect of mimosine on DNA replication. Exp Cell Res 231:173–183

    Article  PubMed  CAS  Google Scholar 

  4. Soedarjo M, Borthakur D (1998) Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhiobuim strains. Appl Environ Microbiol 30:1605–1613

    CAS  Google Scholar 

  5. Krude T (1999) Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res 247:148–159

    Article  PubMed  CAS  Google Scholar 

  6. Dai Y, Gold B, Vishwantha JK, Rhode S (1994) Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 205:210–216

    Article  PubMed  CAS  Google Scholar 

  7. Wang Y, Zhao J, Clapper J, Martin LD, Du C, Devore ER et al (1995) Mimosine differentially inhibits DNA replication and cell cycle progression in somatic cells compared to embryonic cells of Xenopus laevis. Exp Cell Res 217:84–91

    Article  PubMed  CAS  Google Scholar 

  8. Gilbert DM, Neilson A, Miyazawa H, dePamphelis ML, Burhans WC (1995) Mimosine arrests DNA synthesis at replication forks by inhibiting deoxynucleotide metabolism. J Biol Chem 270:9597–9606

    Article  PubMed  CAS  Google Scholar 

  9. Wang G, Miskimins R, Miskimins K (2000) Mimosine arrests cells in G1 by enhancing the levels of p-27Kip1. Exp Cell Res 254:64–71

    Article  PubMed  CAS  Google Scholar 

  10. Mosca PJ, Lin HB, Hamlin JL (1995) Mimosine, a novel inhibitor of DNA replication, binds to a 50 kDa protein in Chinese hamster cells. Nuc Acids Res 23:261–268

    Article  CAS  Google Scholar 

  11. Lin H, Falchetto R, Mosca PJ, Shabanowit J, Hunt DF, Hamlin J (1996) Mimosine targets serine hydroxymethyl transferase. J Biol Chem 271:2548–2556

    Article  PubMed  CAS  Google Scholar 

  12. Park MH,Wolff EC, Folk JE (1993) Hypusine. Its post-translational formation in eucaryotic initiation factor 5A and its potential role in cellular regulation. Biofactors 4:95–104

    PubMed  CAS  Google Scholar 

  13. Hanauske-Abel HM, Park MH, Hanauske AR, Popowitz AM, Lalande M, Folk JE (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochem Biophys Acta 122:115–124

    Google Scholar 

  14. Panopoulous A, Harraz M, Engelhardt JF, Zandi E (2004) Iron-mediated H2O2 production as a mechanism for cell type-specific inhibition of tumor necrosis factor α-induced but not interleukin-1β induced IκB kinase complex/nuclear factor-κB activation. J Biol Chem 280:2912–2923

    Article  Google Scholar 

  15. Mikhailov I, Russev G, Anachkova B (2000) Treatment of mammalian cells with mimosine generates DNA breaks. Mut Res 459:299–306

    CAS  Google Scholar 

  16. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  PubMed  CAS  Google Scholar 

  17. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  PubMed  CAS  Google Scholar 

  18. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  19. Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c relese from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647

    Article  PubMed  CAS  Google Scholar 

  20. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  21. Shen HM, Liu ZG (2006) JNK siganling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939

    Article  PubMed  CAS  Google Scholar 

  22. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  PubMed  CAS  Google Scholar 

  23. Hayon T, Dvilansky A, Oriev L, Nathan I (1999) Non-steroidal antiestrogens induce apoptosis in HL-60 and MOLT3 leukemic cells; involvement of reactive oxygen radicals and protein kinase C. Anticancer Res 19:2089–2093

    PubMed  CAS  Google Scholar 

  24. Hayon T, Atlas L, Levy E, Dvilansky A, Shpilberg O, Nathan I (2003) Multifactorial activities of nonsteroidal antiestrogens against leukemia. Cancer Detect Prev 27:389–396

    Article  PubMed  CAS  Google Scholar 

  25. Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V (2005) Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem 386:73–83

    Article  CAS  Google Scholar 

  26. Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Analy Biochem 190:360–365

    Article  CAS  Google Scholar 

  27. Enari M, Talanian RV, Wong WW, Nagata S (1996) Sequential activation of ICE-like and CPP32-like protease during Fas-mediated apoptosis. Nature 380:723–726

    Article  PubMed  CAS  Google Scholar 

  28. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  29. Lalande M (1990) A reversible arrest point in the late G1 phase of the mammalian cell cycle. Exp Cell Res 186:332–339

    Article  PubMed  CAS  Google Scholar 

  30. Reno F, Tontini A, Burattini S, Papa E, Falcieri E, Trazai G (1999) Mimosine induces apoptosis in the HL-60 human tumor cell line. Apoptosis 4:469–477

    Article  PubMed  CAS  Google Scholar 

  31. Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirrsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability is a central coordinating event of apoptosis. J Exp Med 184:1155–1160

    Article  PubMed  CAS  Google Scholar 

  32. Hileti D, Panayiotidis P, Hoffbrand AV (1995) Iron chelators induce apoptosis in proliferating cells. Br J Haematol 89:181–187

    PubMed  CAS  Google Scholar 

  33. Castilho RF, Kowaltowski AJ, Meinicke AR, Vercesi AE (1995) Oxidative damage of mitochondria induced by Fe(II) citrate or t-butyl hydroperoxide in the presence of the Ca++: effect of coenzyme Q redox state. Free Radic Biol Med 18:55–59

    Article  PubMed  CAS  Google Scholar 

  34. Link G, Saada A, Pinson A, Konijn AM, Hershko C (1998) Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med 131:466–474

    Article  PubMed  CAS  Google Scholar 

  35. Tudor G, Aguilara A, Halverson DO, Laing ND, Sausville EA (2000) Susceptibiltiy to drug-induced apoptosis correlates with differential modulation of Bad, Bcl-2 and Bcl-xL protein levels. Cell Death Differ 6:574–586

    Article  Google Scholar 

  36. Szuts D, Krude T (2004) Cell cycle arrest at the initiation step of human chromosomal DNA replication causes DNA damage. J Cell Sci 117:4897–4908

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Natalia Tsesin and Salah Abu-Hamad for help in preparing and isolating the rat liver mitochondria used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Nathan.

Additional information

Maher Hallak and Liat Vazana have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallak, M., Vazana, L., Shpilberg, O. et al. A molecular mechanism for mimosine-induced apoptosis involving oxidative stress and mitochondrial activation. Apoptosis 13, 147–155 (2008). https://doi.org/10.1007/s10495-007-0156-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0156-7

Keywords

Navigation