Skip to main content
Log in

CD95 signaling deficient mice with a wild-type hematopoietic system are prone to hepatic neoplasia

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Patients with mutations in the death receptor CD95 (Fas/APO-1) frequently develop B-cell lymphoma. However, solid tumors have not been found in the context of defective CD95. This could be due to the fatal autoimmune proliferative disease that develops in the absence of functional CD95 or to a difference in CD95 signaling in lymphoid versus nonlymphoid tissues. To test this we reconstituted mice that harbor a point mutation in the death domain of CD95 (lprcg mice), either in one or in both alleles, with bone marrow from wild-type (wt) mice. After a year one third of the lprcg/lprcg mice developed spontaneous hepatic neoplasms. In contrast only one of the wt/lprcg mice and none of the wt mice developed liver cancer. The agonistic anti-CD95 antibody Jo2 induced massive apoptosis in the liver of wt mice but not in the livers of either wt/lprcg or lprcg/lprcg mice. The susceptibility of lprcg/lprcg mice to liver cancer cannot solely be due to impaired CD95 mediated apoptosis because there was no clear correlation between apoptosis resistance and tumor formation. A gene chip analysis identified genes selectively upregulated in the liver of wt and wt/lprcg mice which may protect these mice from developing liver cancer. Our data represent the first case of CD95 protecting from developing a solid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADA:

Anti-DNA antibodies

BM:

Bone marrow transplantation

Lpr:

Lymphoproliferation

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

References

  1. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  2. Lynch DH et al (1994) The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1:131–136

    Article  PubMed  CAS  Google Scholar 

  3. Ramsdell F et al (1994) Gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol 24:928–933

    Article  PubMed  CAS  Google Scholar 

  4. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317

    Article  PubMed  CAS  Google Scholar 

  5. Kimura M, Matsuzawa A (1994) Autoimmunity in mice bearing lprcg: a novel mutant gene. Int Rev Immunol 11:193–210

    Article  PubMed  CAS  Google Scholar 

  6. Rieux-Laucat F (2006) Inherited and acquired death receptor defects in human Autoimmune Lymphoproliferative Syndrome. Curr Dir Autoimmun 9:18–36

    PubMed  Google Scholar 

  7. Wajant H, Pfizenmaier K, Scheurich P (2003) Non-apoptotic Fas signaling. Cytokine Growth Factor Rev 14:53–66

    Article  PubMed  CAS  Google Scholar 

  8. Peter ME et al (2007) The CD95 receptor: Apoptosis revisited. Cell 129:447–450

    Article  PubMed  CAS  Google Scholar 

  9. Barnhart BC et al (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. Embo J 23:3175–3185

    Article  PubMed  CAS  Google Scholar 

  10. Peter ME, Legembre P, Barnhart BC (2005) Does CD95 have tumor promoting activities? Biochim Biophys Acta 1755:25–36

    PubMed  CAS  Google Scholar 

  11. Legembre P et al (2004) Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds. EMBO Rep 5:1084–1089

    Article  PubMed  CAS  Google Scholar 

  12. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  13. Mariani SM, Matiba B, Armandola EA, Krammer PH (1994) The APO-1/Fas (CD95) receptor is expressed in homozygous MRL/lpr mice. Eur J Immunol 24:3119–3123

    Article  PubMed  CAS  Google Scholar 

  14. Adachi M et al (1995) Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11:294–300

    Article  PubMed  CAS  Google Scholar 

  15. Hao Z, Hampel B, Yagita H, Rajewsky K (2004) T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J Exp Med 199:1355–1365

    Article  PubMed  CAS  Google Scholar 

  16. Marski M, Kandula S, Turner JR, Abraham C (2005) CD18 is required for optimal development and function of CD4 + CD25 + T regulatory cells. J Immunol 175:7889–7897

    PubMed  CAS  Google Scholar 

  17. Andervont HB (1950) Studies on the occurrence of spontaneous hepatomas in mice of strains C3H and CBA. J Natl Cancer Inst 11:581–592

    PubMed  CAS  Google Scholar 

  18. Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6:920–923

    Article  PubMed  CAS  Google Scholar 

  19. Ogasawara J et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    Article  PubMed  CAS  Google Scholar 

  20. Farinati F et al (1996) Hepatocyte proliferative activity in chronic liver damage as assessed by the monoclonal antibody MIB1 Ki67 in archival material: the role of etiology, disease activity, iron, and lipid peroxidation. Hepatology 23:1468–1475

    Article  PubMed  CAS  Google Scholar 

  21. Asefa B et al (2006) p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. FEBS Lett 580:1205–1214

    Article  PubMed  CAS  Google Scholar 

  22. Nagata S (1999) Fas ligand-induced apoptosis. Annu Rev Genet 33:29–55

    Article  PubMed  CAS  Google Scholar 

  23. Muschen M, Warskulat U, Beckmann MW (2000) Defining CD95 as a tumor suppressor gene. J Mol Med 78:312–325

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Chantar ML et al (2002) Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. Faseb J 16:1292–1294

    PubMed  CAS  Google Scholar 

  25. Takahashi Y et al (2002) Enhanced spontaneous and aflatoxin-induced liver tumorigenesis in xeroderma pigmentosum group A gene-deficient mice. Carcinogenesis 23:627–633

    Article  PubMed  CAS  Google Scholar 

  26. Straus SE et al (2001) The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98:194–200

    Article  PubMed  CAS  Google Scholar 

  27. Lin A, Karin M (2003) NF-κB in cancer: a marked target. Semin Cancer Biol 13:107–114

    Article  PubMed  CAS  Google Scholar 

  28. Pikarsky E et al (2004) NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    Article  PubMed  CAS  Google Scholar 

  29. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  PubMed  CAS  Google Scholar 

  30. Sakurai T, Maeda S, Chang L, Karin M (2006) Loss of hepatic NF-κ B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA 103:10544–10551

    Article  PubMed  CAS  Google Scholar 

  31. Luedde T et al (2007) Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11:119–132

    Article  PubMed  CAS  Google Scholar 

  32. Faouzi S et al (2001) Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-κ B-independent, caspase-3-dependent pathway. J Biol Chem 276:49077–49082

    Article  PubMed  CAS  Google Scholar 

  33. Ryschich E et al (2006) Molecular fingerprinting and autocrine growth regulation of endothelial cells in a murine model of hepatocellular carcinoma. Cancer Res 66:198–211

    Article  PubMed  CAS  Google Scholar 

  34. Shi GP et al (1999) Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10:197–206

    Article  PubMed  CAS  Google Scholar 

  35. Nakagawa TY et al (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217

    Article  PubMed  CAS  Google Scholar 

  36. Becker FF (1981) Inhibition of spontaneous hepatocarcinogenesis in C3H/HeN mice by transplanted hepatocellular carcinomas. Cancer Res 41:3320–3323

    PubMed  CAS  Google Scholar 

  37. Irie M et al (2004) Inhibition of spontaneous development of liver tumors by inoculation with dendritic cells loaded with hepatocellular carcinoma cells in C3H/HeNCRJ mice. Int J Cancer 111:238–245

    Article  PubMed  CAS  Google Scholar 

  38. Booker JK, Reap EA, Cohen PL (1998) Expression and function of Fas on cells damaged by gamma-irradiation in B6 and B6/lpr mice. J Immunol 161:4536–4541

    PubMed  CAS  Google Scholar 

  39. Apostolou I, Hao Z, Rajewsky K, von Boehmer H (2003) Effective destruction of Fas-deficient insulin-producing beta cells in type 1 diabetes. J Exp Med 198:1103–1106

    Article  PubMed  CAS  Google Scholar 

  40. Yasuda T et al (2000) Immunological characterization of C3H mice congenic for Fas(lprcg), C3h/HeJ-Fas(lprcg)/Fas(lprcg). Lab Anim 34:46–55

    Article  PubMed  CAS  Google Scholar 

  41. Desbarats J et al (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5:118–125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We like to thank Terry Lee for performing histology, Xinmin Li for performing the gene array analysis and Nathan Little for help with the AOM/DSS model. We are grateful to Dr. Marisa Alegre for help with the FACS analysis and ELISA used in the study, to Dr. Kazutoshi Sayama for providing the lprcg mice and to Dr. Greg Gores for helpful discussions. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus E. Peter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 401 kb)

(DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SM., Rajapaksha, T.W., Zhang, M. et al. CD95 signaling deficient mice with a wild-type hematopoietic system are prone to hepatic neoplasia. Apoptosis 13, 41–51 (2008). https://doi.org/10.1007/s10495-007-0149-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0149-6

Keywords

Navigation