Skip to main content
Log in

Distributed Roughness Effects on Transitional and Turbulent Boundary Layers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Note that in some publications, (ξ 1,ξ 2,ξ 3) are represented as (ξ,η,ζ) and (x 1,x 2,x 3) as (x,y,z)

  2. We have also carried out additional simulations to explore the effects of free-stream turbulence (FST). However, this is beyond the scope of the current paper and will be published elsewhere.

  3. In the case of regularly distributed roughness, u can also be defined by subtracting the instantaneous flow from the flow field averaged over multiple roughness elements at identical phase. However, this approach is not feasible for randomly distributed roughness.

  4. Note: The low-speed streak situated mid-way between the roughness peaks in Fig. 11a is due to the peaks of the roughness element at an upstream location (refer to the computational domain in Fig. 1)

References

  1. Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 021,004 (2010)

    Article  Google Scholar 

  2. Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)

    Article  Google Scholar 

  3. Reshotko, E.: Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 1067–1075 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braslow, A.L.: Review of the Effect of Distributed Surface Roughness on Boundary-Layer Transition. Tech. rep., DTIC Document (1960)

  5. Montomoli, F., Hodson, H., Haselbach, F.: Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. J. Turbomach. 132(3), 031,018 (2010)

    Article  Google Scholar 

  6. Stripf, M., Schulz, A., Bauer, H.J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transfer—part i: model formulations. J. Turbomach. 131(3), 031,016 (2009)

    Article  Google Scholar 

  7. De Tullio, N., Paredes, P., Sandham, N., Theofilis, V.: Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernardini, M., Pirozzoli, S., Orlandi, P.: Compressibility effects on roughness-induced boundary layer transition. Int. J. Heat Fluid Flow 35, 45–51 (2012)

    Article  Google Scholar 

  9. Iyer, P., Muppidi, S., Mahesh, K.: Roughness-induced transition in high speed flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 566 (2011)

  10. Redford, J.A., Sandham, N.D., Roberts, G.T.: Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48(12), 2818–2830 (2010)

    Article  Google Scholar 

  11. Muppidi, S., Mahesh, K.: Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 28–56 (2012)

    Article  MATH  Google Scholar 

  12. Roberts, S., Yaras, M.: Boundary-layer transition affected by surface roughness and free-stream turbulence. J. Fluids Eng. 127(3), 449–457 (2005)

    Article  Google Scholar 

  13. Nikuradse, J.: Laws of flow in rough pipes. In: VDI Forschungsheft. Citeseer (1933)

  14. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  15. Jimenez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leonardi, S., Orlandi, P., Smalley, R., Djenidi, L., Antonia, R.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003)

    Article  MATH  Google Scholar 

  17. Chung, D., Chan, L., MacDonald, M., Hutchins, N., Ooi, A.: A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431 (2015)

    Article  Google Scholar 

  18. Chatzikyriakou, D., Buongiorno, J., Caviezel, D., Lakehal, D.: Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int. J. Heat Fluid Flow 53, 29–43 (2015)

    Article  Google Scholar 

  19. Licari, A., Christensen, K.: Modeling cumulative surface damage and assessing its impact on wall turbulence. AIAA J. 49(10), 2305–2320 (2011)

    Article  Google Scholar 

  20. Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lee, J.H., Sung, H.J., Krogstad, P.Å.: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)

    Article  MATH  Google Scholar 

  22. Lee, S.H., Sung, H.J.: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)

    Article  MATH  Google Scholar 

  23. Simens, M.P., Gungor, A.G.: The effect of surface roughness on laminar separated boundary layers. J. Turbomach. 136(3), 031,014 (2014)

    Article  Google Scholar 

  24. Sengupta, A., Vadlamani, N.R., Tucker, P.G.: Roughness induced transition in low pressure turbines. In: 55th AIAA Aerospace Sciences Meeting, p. 0303 (2017)

  25. Vadlamani, N.R.: Numerical Investigation of Separated Flows in Low Pressure Turbines. Ph.D. thesis, University of Cambridge (2014)

  26. Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Investigation of wake induced transition in low-pressure turbines using large eddy simulation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V06CT42A008–V06CT42A008. American Society of Mechanical Engineers (2013)

  27. Matsuura, K., Kato, C.: Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade. AIAA J. 45(2), 442–457 (2007)

    Article  Google Scholar 

  28. Rizzetta, D.P., Visbal, M.R.: Direct numerical simulations of flow past an array of distributed roughness elements. AIAA J. 45(8), 1967–1976 (2007)

    Article  Google Scholar 

  29. Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(04), 1259–1286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Leonardi, S., Orlandi, P., Antonia, R.A.: Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19(12), 125,101 (2007)

    Article  MATH  Google Scholar 

  31. Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gaitonde, D.V., Visbal, M.R.: High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into Fdl3di. Tech. rep., DTIC Document (1998)

    Book  Google Scholar 

  33. Rao, V.N., Tucker, P.G.: Intake lip separation control using plasma actuators. In: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016)

  34. Choudhari, M., Fischer, P.: Roughness induced transient growth. In: 35th AIAA Fluid Dynamics Conference and Exhibit, p. 4756 (2005)

  35. Ergin, F.G., White, E.B.: Unsteady and transitional flows behind roughness elements. AIAA J. 44(11), 2504–2514 (2006)

    Article  Google Scholar 

  36. Reda, D.C.: Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rocket. 39(2), 161–167 (2002)

    Article  Google Scholar 

  37. Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hack, M., Zaki, T.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)

    Article  MathSciNet  Google Scholar 

  39. Loiseau, J.C., Robinet, J.C., Cherubini, S., Leriche, E.: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)

    Article  MathSciNet  Google Scholar 

  40. Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084,110 (2015)

    Article  Google Scholar 

  41. Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)

    Article  MATH  Google Scholar 

  42. Bose, R., Durbin, P.A.: Helical modes in boundary layer transition. Physical Review Fluids 1(7), 073,602 (2016)

    Article  Google Scholar 

  43. Denissen, N.A., White, E.B.: Secondary instability of roughness-induced transient growth. Phys. Fluids 25(11), 114,108 (2013)

    Article  Google Scholar 

  44. Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schultz, M., Flack, K.: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)

    Article  MATH  Google Scholar 

  46. Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)

    Article  MATH  Google Scholar 

  47. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010)

    Article  MATH  Google Scholar 

  48. Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34(21), 8964–8973 (2009)

    Article  Google Scholar 

  49. Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: Dns of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Smalley, R., Leonardi, S., Antonia, R., Djenidi, L., Orlandi, P.: Reynolds stress anisotropy of turbulent rough wall layers. Exp. Fluids 33(1), 31–37 (2002)

    Article  Google Scholar 

  51. Jackson, P.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)

    Article  MATH  Google Scholar 

Download references

Funding

Author Nagabhushana Rao Vadlamani gratefully acknowledge the financial support from the St. Catharine’s college, Cambridge through the Bowring research fellowship. The simulations are performed on UK Supercomputer ARCHER, to which access was provided through the UK Turbulence Consortium Grant No. EP/L000261/1. Computational time from Hartree center (STFC) under Xeon Phi Access Programme is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagabhushana Rao Vadlamani.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadlamani, N.R., Tucker, P.G. & Durbin, P. Distributed Roughness Effects on Transitional and Turbulent Boundary Layers. Flow Turbulence Combust 100, 627–649 (2018). https://doi.org/10.1007/s10494-017-9864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9864-4

Keywords

Profiles

  1. Nagabhushana Rao Vadlamani