Skip to main content
Log in

Turbulent Drag Reduction by Uniform Blowing Over a Two-dimensional Roughness

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulation (DNS) of turbulent channel flow over a two-dimensional irregular rough wall with uniform blowing (UB) was performed. The main objective is to investigate the drag reduction effectiveness of UB on a rough-wall turbulent boundary layer toward its practical application. The DNS was performed under a constant flow rate at the bulk Reynolds number values of 5600 and 14000, which correspond to the friction Reynolds numbers of about 180 and 400 in the smooth-wall case, respectively. Based upon the decomposition of drag into the friction and pressure contributions, the present flow is considered to belong to the transitionally-rough regime. Unlike recent experimental results, it turns out that the drag reduction effect of UB on the present two-dimensional rough wall is similar to that for a smooth wall. The friction drag is reduced similarly to the smooth-wall case by the displacement of the mean velocity profile. Besides, the pressure drag, which does not exist in the smooth-wall case, is also reduced; namely, UB makes the rough wall aerodynamically smoother. Examination of turbulence statistics suggests that the effects of roughness and UB are relatively independent to each other in the outer layer, which suggests that Stevenson’s formula can be modified so as to account for the roughness effect by simply adding the roughness function term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wood, R.M.: Impact of advanced aerodynamic technology on transportation energy consumption. SAE Paper 2004-01-1306 (2004)

  2. Kornilov, V.I.: Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Prog. Aerosp. Sci. 76, 1–23 (2015)

    Article  Google Scholar 

  3. Moin, P., Bewley, T.: Feedback control of turbulence Appl. Mech. Rev. 47, S3–S13 (2001)

    Article  Google Scholar 

  4. Gad-el-Hak, M.: Flow control: The future. J. Aircraft 38, 402–421 (2001)

    Article  Google Scholar 

  5. Walsh, M.J.: Riblets as a viscous drag reduction technique. AIAA J. 21, 485–486 (1983)

    Article  Google Scholar 

  6. Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. A 368, 4775–4806 (2010)

    Article  Google Scholar 

  7. Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)

    Article  Google Scholar 

  8. Kim, J.: Control of turbulent boundary layers. Phys. Fluids 15, 1093–1105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical system-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009)

    Article  MATH  Google Scholar 

  10. Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)

    Article  MATH  Google Scholar 

  11. Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4, 1605–1607 (1992)

    Article  Google Scholar 

  12. Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1996)

    Article  MATH  Google Scholar 

  13. Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  14. Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369, 1428–1442 (2011)

    Article  Google Scholar 

  16. Min, T., Kang, S.M., Speyer, J.L., Kim, J.: Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318 (2006)

    Article  MATH  Google Scholar 

  17. Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)

    Article  Google Scholar 

  18. Mamori, H., Iwamoto, K., Murata, A.: Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids 26, 015101 (2014)

    Article  Google Scholar 

  19. Bewley, T.R.: A fundamental limit on the balance of power in a transpiration-controlled channel flow. J. Fluid Mech 632, 443–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukagata, K., Sugiyama, K., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Phys. D 238, 1082–1086 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prandtl, L.: Über Flüssigkeitsbewegung Bei Sehr Kleiner Reibung. In: Verhandlungen Des III Internationalen Mathematiker-Kongresses, Heidelberg, pp 484–491 (1904)

  22. Mickley, H.S., Ross, R.C., Squyers, A.L., Stewart, W.E.: Heat, mass, and momentum transfer for flow over a flat plate with blowing or suction. NACA Technical Note 3208 (1957)

  23. Mickley, H.S., Davis, R.S.: Momentum transfer for flow over a flat plate with blowing. NACA Technical Note 4017 (1957)

  24. Jeromin, L.O.F.: The status of research in turbulent boundary layers with fluid injection. Prog. Aerosp. Sci. 10, 65–189 (1970)

    Article  MATH  Google Scholar 

  25. Moin, P.: Numerical Simulation of Wall-Bounded Turbulent Shear Flows. In: Krause, E. (ed.) Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 170, pp 55–76. Springer, Berlin (1982)

  26. Sumitani, Y., Kasagi, N.: Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA J. 32, 1220–1228 (1995)

    Article  Google Scholar 

  27. Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)

    Article  MATH  Google Scholar 

  28. Kametani, Y., Fukagata, K.: Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154–172 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)

    Article  Google Scholar 

  30. Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux. J. Turbul. 17, 913–929 (2016)

    Article  MathSciNet  Google Scholar 

  31. Liu, P.Q., Duan, H.S., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47, 229–239 (2010)

    Article  Google Scholar 

  32. Noguchi, D., Fukagata, K., Tokugawa, N.: Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing. J. Fluid Sci. Technol. 11, JFST0004 (2016)

    Article  Google Scholar 

  33. Schetz, J.A., Nerney, B.: Turbulent boundary layer with injection and surface roughness. AIAA J. 15, 1288–1294 (1977)

    Article  Google Scholar 

  34. Voisinet, R.L.P.: Influence of roughness and blowing on compressible turbulent boundary layer flow. Final Report, Naval Surface Weapons Center, Silver Spring, MD, NSWC TR 79–153 (1979)

  35. Miller, M.A., Martin, A., Bailey, S.C.C.: Investigation of the scaling of roughness and blowing effects on turbulent channel flow. Exp. Fluids 55, 1675 (2014)

    Article  Google Scholar 

  36. Schultz, M.P., Flack, K.A.: Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21, 015104 (2009)

    Article  MATH  Google Scholar 

  37. Clauser, F.H.: Turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)

    Article  Google Scholar 

  38. Perry, A.E., Li, J.D.: Experimental support for the attached-eddy hypothesis in zero-pressure gradient turbulent boundary layers. J. Fluid Mech. 218, 405–438 (1990)

    Article  Google Scholar 

  39. Stevenson, T.N.: A law of the wall for turbulent boundary layers with suction and injection. CoA Report Aero No. 166 The College of Aeronautics Cranfield (1963)

  40. Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)

    Article  Google Scholar 

  41. Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: DNS Of a turbulent boundary with surface roughness. J. Fluid Mech. 729, 603–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Napoli, E., Armenio, V., De Marchis, M: The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385–394 (2008)

    Article  MATH  Google Scholar 

  44. Milici, B., De Marchis, M., Sardina, G., Napoli, E.: Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. J. Fluid Mech. 739, 465–478 (2014)

    Article  Google Scholar 

  45. Kang, S., Choi, H.: Active wall motions for skin-friction drag reduction. Phys. Fluids 12, 3301–3304 (2000)

    Article  MATH  Google Scholar 

  46. Kajishima, T: Finite-difference method for convective terms using non-uniform grid. Trans. JSME/B 65, 1607–1612 (1999). (in Japanese)

    Article  Google Scholar 

  47. Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)

    Article  MATH  Google Scholar 

  49. Quadrio, M., Frohnapfel, B., Hasegawa, Y.: Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow. Eur. J. Mech. B/Fluids 55, 286–293 (2016)

    Article  MathSciNet  Google Scholar 

  50. De Marchis, M., Napoli, E., Armenio, V.: Turbulence structures over irregular rough surfaces. J. Turbul. 11, N3 (2010)

    Article  Google Scholar 

  51. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re, τ = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  52. Flack, K., Schultz, M.P.: Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 132, 041203 (2010)

    Article  Google Scholar 

  53. Raupach, M.R., Shaw, R.H.: Averaging procedures for flow within vegetation canopies. Bound.-Layer Meteor. 22, 79–90 (1982)

    Article  Google Scholar 

  54. Bhaganagar, K., Leighton, R.: Three-level decomposition for the analysis of turbulent flow over rough-wall. J. Appl. Fluid Mech. 6, 257–265 (2013)

    Google Scholar 

  55. Durbin, P.A., Medic, G., Seo, J.-M., Eaton, J.K., Song, S.: Rough wall modification of two-layer k𝜖. J. Fluids Eng. 123, 16–21 (2001)

    Article  Google Scholar 

  56. Flack, K., Schultz, M.P., Rose, W.B.: The onset of roughness effects in the transitionally rough regime. Int. J. Heat Fluid Flow 35, 160–167 (2012)

    Article  Google Scholar 

  57. Krogstad, P.-Å., Anderson, H.I., Bakken, O.M., Ashrafian, A.: An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327–352 (2005)

    Article  MATH  Google Scholar 

  58. White, F.M.: Fluid Mechanics, 8th Edition in SI Units, p 327. McGraw-Hill, New York (2016)

    Google Scholar 

  59. Avsarkisov, V., Oberlack, M., Hoyas, S.: New scaling laws for turbulent Poiseuille flow with wall transpiration. J. Fluid Mech. 746, 99–122 (2014)

    Article  MathSciNet  Google Scholar 

  60. Townsend, A.A.: The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  61. Bhaganagar, K., Kim, J., Coleman, G.: Effect of roughness on wall-bounded turbulence. flow Turbul Combust. 72, 463–492 (2004)

    Article  MATH  Google Scholar 

  62. Flack, K.A., Schultz, M.P.: Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305 (2016)

    Article  Google Scholar 

  63. Vigdorovich, I.: A law of the wall for turbulent boundary layers with suction: Stevenson’s formula revisited. Phys. Fluids 28, 085102 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. Shinnosuke Obi and Keita Ando (Keio University) for fruitful discussion and Messrs. Yuta Ikeya and Ken Kawai (Keio University) for assistance in language improvement. This work was done in the framework of Student Exchange Agreement between Politecnico di Milano and Keio University. The was partly supported through JSPS KAKENHI Grant Number JP25420129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Fukagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, E., Quadrio, M. & Fukagata, K. Turbulent Drag Reduction by Uniform Blowing Over a Two-dimensional Roughness. Flow Turbulence Combust 99, 765–785 (2017). https://doi.org/10.1007/s10494-017-9858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9858-2

Keywords

Navigation