Skip to main content
Log in

Gravity Effects on Fiber Dynamics in Wall Turbulence

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present study investigated gravity effects on the dynamical behavior of inertial fibers suspended in a vertical channel flow. Direct numerical simulations were performed to obtain the turbulent flow field and the fibers were modelled as prolate spheroidal point particles. For each of the four fiber classes, three different gravity configurations were considered: upward flow with gravity opposing, downward flow with aiding gravity, and channel flow in absence of gravity. Results for the fiber distribution and the translational and rotational fiber motion were reported. In the near-wall region, the presence of gravity resulted in an increased fiber density in the downward flow but a nearly uniform distribution of fibers in upward flow. However, the preferential clustering of fibers in near-wall low-speed streaks was unaffected by gravity. The mean wall-normal or drift velocity of the fibers was higher in the downward flow and lower in the upward flow as compared to the case with no gravity. The suppressed drift velocity in the upward flow resulted in a more uniform fiber distribution throughout the channel in contrast to the near-wall accumulation of fibers in the two other cases. Overall gravity turned out to have negligible effects on some of the statistics of the least inertial fibers whereas the inclusion of gravity had a strong impact for heavier fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922)

    Article  MATH  Google Scholar 

  2. Taylor, G.I.: The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 103, 58–61 (1923)

    Article  MATH  Google Scholar 

  3. Lundell, F., Carlsson, A.: Heavy ellipsoids in creeping shear flow: Transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323 (2010)

    Article  Google Scholar 

  4. Siewert, C., Kunnen, R.P.J., Meinke, M., Schröder, W.: Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 45–56 (2014)

    Article  Google Scholar 

  5. Parsa, S., Calzavarini, E., Toschi, F., Voth, G.A.: Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501 (2012)

    Article  Google Scholar 

  6. Subramanian, G., Koch, D.L.: Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shapiro, M., Goldenberg, M.: Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 65–87 (1993)

    Article  Google Scholar 

  8. Zhang, H., Ahmadi, G., Fan, F.G., McLaughlin, J.B.: Ellipsoidal particles transport and deposition in turbulent channel flows. Int. J. Multiphase Flow 27, 971–1009 (2001)

    Article  MATH  Google Scholar 

  9. Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J., Boersma, B.J.: Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302 (2008)

    Article  MATH  Google Scholar 

  10. Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301 (2010)

    Article  MATH  Google Scholar 

  11. Marchioli, C., Soldati, A.: Rotation statistics of fibers in wall shear turbulence. Acta Mechanica 224, 2311–2329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Njobuenwu, D.O., Fairweather, M.: Effect of shape on inertial particle dynamics in a channel flow. Flow Turb. Combust. 92, 83–101 (2014)

    Article  Google Scholar 

  13. Zhao, L., Marchioli, C., Andersson, H.I.: Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26, 063302 (2014)

    Article  Google Scholar 

  14. Kleinstreuer, C., Feng, Y.: Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics—A review. J. Biomech. Engng. 135, 021008 (2013)

    Article  Google Scholar 

  15. Mandø, M., Rosendahl, L.: On the motion of non-spherical particles at high Reynolds number. Powder Tech. 202, 1–13 (2010)

    Article  Google Scholar 

  16. Reeks, M.W.: The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729–739 (1983)

    Article  Google Scholar 

  17. Caporaloni, M., Tampieri, F., Trombetti, F., Vittori, O.: Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565–568 (1975)

    Article  Google Scholar 

  18. Andersson, H.I., Zhao, L., Variano, E.A.: On the anisotropic vorticity in turbulent channel flows. J. Fluids Eng. 137, 084503 (2015)

    Article  Google Scholar 

  19. Zhao, L., Challabotla, N.R., Andersson, H.I., Variano, E.A.: Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115, 244501 (2015)

    Article  Google Scholar 

  20. Abbasi Hoseini, A., Lundell, F., Andersson, H.I.: Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. Int. J. Multiphase Flow 76, 13–21 (2015)

    Article  Google Scholar 

  21. Do-Quang, M., Amberg, G., Brethouwer, G., Johansson, A.V.: Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006 (2014)

    Article  Google Scholar 

  22. Uijttewaal, W.S.J., Oliemans, R.V.A.: Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Phys. Fluids 8, 2590–2604 (1996)

    Article  MATH  Google Scholar 

  23. Nilsen, C., Andersson, H.I., Zhao, L.: A Voronoï analysis of preferential concentration in a vertical channel flow. Phys. Fluids 25, 115108 (2013)

    Article  Google Scholar 

  24. Marchioli, C., Picciotto, M., Soldati, A.: Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow. Int. J. Multiphase Flow 33, 227–251 (2007)

    Article  Google Scholar 

  25. Zhang, H., Ahmadi, G.: Aerosol particle transport and deposition in vertical and horizontal turbulent duct flows. J. Fluid Mech. 406, 55–80 (2000)

    Article  MATH  Google Scholar 

  26. Gillissen, J.J.J., Boersma, B.J., Mortensen, P.H., Andersson, H.I.: On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Phys. Fluids 19, 035102 (2007)

    Article  MATH  Google Scholar 

  27. Brenner, H.: The Stokes resistance of an arbitrary particle—IV Arbitrary fields of flow. Chem. Engng Sci. 19, 703–727 (1964)

    Article  Google Scholar 

  28. Fan, F.-G., Ahmadi, G.: Dispersion of ellipsoidal particles in an isotropic pseudo-turbulent flow field. J. Fluids Eng. 117, 154–161 (1995)

    Article  Google Scholar 

  29. Schiller, L., Naumann, A.Z.: Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Ver. Deut. Ing. 77, 318–320 (1933)

    Google Scholar 

  30. Hölzer, A., Sommerfeld, M.: New simple correlation formula for the drag coefficient of non-spherical particles. Powder Tech. 184, 361–365 (2008)

    Article  Google Scholar 

  31. Ouchene, R., Khalij, M., Tanière, A., Arcen, B.: Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers. Comput. Fluids 113, 53–64 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zastawny, M., Mallouppas, G., Zhao, F., van Wachem, B.: Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Int. J. Multiphase Flow 39, 227–239 (2012)

    Article  Google Scholar 

  33. Jiang, F., Gallardo, J.P., Andersson, H.I.: The laminar wake behind a 6:1 prolate spheroid at 45 incidence angle. Phys. Fluids 26, 113602 (2014)

    Article  Google Scholar 

  34. Ouchene, R., Chadil, A., Fede, P., Khalij, M., Tanière, A., Vincent, S., Estivalezès, J.-L., Arcen, B.: Numerical simulation and modelling of the forces acting on single and multiple non-spherical particles. In: Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting FEDSM2014-22244, (2014)

Download references

Acknowledgments

This study has been supported by the Research Council of Norway through a research fellowship to N.R.C. (project no 213917/F20 “Turbulent Particle Suspensions”) and grants of computing time (Programme for Supercomputing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Reddy Challabotla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challabotla, N.R., Zhao, L. & Andersson, H.I. Gravity Effects on Fiber Dynamics in Wall Turbulence. Flow Turbulence Combust 97, 1095–1110 (2016). https://doi.org/10.1007/s10494-016-9742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9742-5

Keywords

Navigation