Skip to main content
Log in

Time-accurate Numerical Simulations of Swirling Flow with Rotor-stator Interaction

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A series of numerical simulations is undertaken to study a highly swirling turbulent flow generated by rotor-stator interaction in a swirl generator. The purpose is to assess the applicability of different turbulence models in swirling flow with a high level of unsteadiness and a significant production and dissipation of turbulence in the flow away from the wall. Nine turbulence models are compared: four high-Reynolds URANS, two low-Reynolds URANS and three hybrid URANS-LES. These are the standard k𝜖, SST kω, realizable k𝜖, R N G k𝜖, Launder-Sharma k𝜖, Lien-Cubic k𝜖, delayed DES Spalart-Allmaras, DDES SST kω and improved DDES-SA. The URANS models are capable of capturing the main unsteady feature of this flow, the so-called helical vortex rope, which is formed by the strong centrifugal force and an on-axis recirculation region. However, the size of the on-axis recirculation region is overestimated by the URANS models. Although the low-Reynolds URANS formulations resolve the boundary layers in the runner and the draft tube more accurately, they still encounter difficulties in predicting the main flow features in the adverse pressure gradient in the draft tube. It is shown that a more detailed resolution, which is provided by the hybrid URANS-LES methods, is necessary to capture the turbulence and the coherent structures. The flow contains a strong disintegration of the vortex rope which is predicted well by the hybrid RANS-LES models. The hybrid methods also capture the blade wakes better than the other models, elucidating the wake interaction with the vortex rope. The frequency of the vortex rope is predicted well and the total turbulence (resolved and modeled), suggested by DDES-SA, corresponds reasonably well to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Javadi, A., Nilsson, H.: LES and DES of strongly swirling turbulent flow through a suddenly expanding circular pipe. Comput. Fluids 107, 301–313 (2015)

    Article  Google Scholar 

  2. Javadi, A., Nilsson, H.: LES and DES of swirling flow with rotor-stator interaction. Progress in hybrid RANS-LES modeling 130, 457–468 (2014)

    Article  Google Scholar 

  3. Javadi, A., Nilsson, H.: A comparative study of scale-adaptive and large-eddy simulation of highly swirling turbulent flow through an abrupt expansion. IOP Conf. Ser.: Earth Environ. Sci. 22, 022017 (2014)

    Article  Google Scholar 

  4. Leibovich, S.: Vortex stability and breakdown: survey and extension. AIAA J. 22, 1192–1206 (1984)

    Article  Google Scholar 

  5. Dörfler, P., Sick, M., Coutu, A.: Flow-induced pulsation and vibration in hydroelectric machinery. Springer, London (2013)

    Book  Google Scholar 

  6. Avellan, F.: Flow investigation in a Francis draft tube: the FLINDT project. In: Proceedings of the 20th IAHR Symposium on Hydraulic Machinery and Systems, Charlote, North Carolina, USA (2000)

  7. Chirag, T., Cervantes, M.J., Gandhi, B.K., Dahlhaug, O.G.: Experimental and numerical studies for a high head Francis turbine at several operating points. J. Fluid Eng. 135(11), 111102 (2013)

    Article  Google Scholar 

  8. Keck, H., Sick, M.: Thirty years of numerical flow simulation in hydraulic turbomachines. ActaMech 201, 211–229 (2008)

    MATH  Google Scholar 

  9. Foroutan, H., Yavuzkurt, S.: Flow in the simplified draft tube of a Francis turbine operating at partial load-part I: simulation of the vortex rope. ASME J. Appl. Mech. 81(6), 061010 (2014)

    Article  Google Scholar 

  10. Spalart, P.R., Jou, W.H., Strelets, M.K., Allmaras, S.R.: Comments on the feasibility of LES for wings and on a hybrid RANS-LES approach. In: Advances in DNS-LES, 1st AFOSR International Conference on DNS-LES, Greyden press, Columbus, OH (1997)

  11. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.K.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comp. Fluid Dyn. 20(3), 181–195 (2006)

    Article  MATH  Google Scholar 

  12. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  13. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid URANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Fl. 29, 1638–1649 (2008)

    Article  Google Scholar 

  14. Foroutan, H., Yavuzkurt, S.: A partially-averaged Navier-Stokes model for the simulation of turbulent swirling flow with vortex breakdown. Int. J. Heat Fluid Fl. 50, 402–416 (2014)

    Article  Google Scholar 

  15. Girimaji, S.S.: Partially-averaged Navier-Stokes model for turbulence: a Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. ASME J. Appl. Mech. 73(3), 413–421 (2006)

    Article  MATH  Google Scholar 

  16. Resiga, R., Muntean, S., Bosioc, A.I., Stuparu, A., Milos, T., Baya, T.: Swirling flow appratus and test rig for flow control in hydraulic turbines discharge cone. In: 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Timisoara, Romania (2007)

  17. Tănăsa, C., Resiga, R., Muntean, S., Bosioc, A.: Flow-feedback method for mitigating the vortex rope in decelerated swirling flows. ASME J. Fluids Eng. 135 (6), 1–11 (2013). 061304

    Google Scholar 

  18. Bosioc, A.I., Resiga, R., Muntean, S., Tănăsa, C.: Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone. ASME J. Fluid Eng. 134(8), 1–11 (2012). 081104

    Article  Google Scholar 

  19. Ciocan, G., Iliescu, M., Vu, T.C., Nennemann, B., Avellan, F.: Experimental study and numerical simulation of the FLINDT draft tube rotating vortex. ASME J. Fluid Eng. 129, 146–158 (2007)

    Article  Google Scholar 

  20. Muntean, S., Bosioc, I.A., Stanciu, R., Tănăsa, C., Resiga, R.: 3D numerical analysis of a swirling flow generator. In: Proc. of the 4th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia, pp 115–125 (2011)

  21. Javadi, A., Bosioc, A., Nilsson, H., Muntean, S., Resiga, R.: Velocity and pressure fluctuations induced by the precessing helical vortex in a conical diffuser. IOP Conf. Ser.: Earth Environ. Sci. 22, 032009 (2014)

    Article  Google Scholar 

  22. van Leer, B.: Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  23. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper, 92–0439 (1992 )

  24. Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.L.: Development of DDES and IDDES formulations for the kω shear stress transport model. Flow. Turbulence Combust. 88, 431–449 (2012)

    Article  MATH  Google Scholar 

  25. Gyllenram, W., Nilsson, H., Davidson, L.: Large eddy simulation of turbulent swirling flow through a sudden expansion. In: 23rd IAHR Symposium, Yokohama (2006)

  26. Rung, T., Lübcke, H., Thiele, F.: Universal wall-boundary conditions for turbulence-transport models. J. Appl. Math. Mech. 81(S3), 481–482 (2001)

    MATH  Google Scholar 

  27. Spalding, D.B.: A single formula for the law of the wall. ASME J. Appl. Mech. 28(3), 455–458 (1961)

    Article  MATH  Google Scholar 

  28. Beaudoin, M., Jasak, H.: Development of a generalized grid interface for turbomachinery simulation with OpenFOAM. In: Open source CFD International conference Berlin, Germany (2008)

  29. Nilsson, H., Page, M., Beaudoin, M., Gschaider, B., Jasak, H.: The OpenFOAM turbomachinery working-group and conclusion from the turbomachinery session of the third OpenFOAM workshop. In: IAHR, 24th symposium on hydraulic machinery and systems, Foz do Iguassu, Brazil (2008)

  30. Launder, B., Sharma, B.: Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer 1, 131–138 (1974)

    Article  Google Scholar 

  31. Pope, S.B.: Turbulent flows. Cambridge University Press, New York (2002)

    Google Scholar 

  32. Petit, O., Nilsson, H., Muntean, S., Resiga, R.: Unsteady simulations of the flow in a swirl generator, using OpenFOAM. Int. J. Fluid Machinery Systems 4(1), 199–208 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardalan Javadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, A., Nilsson, H. Time-accurate Numerical Simulations of Swirling Flow with Rotor-stator Interaction. Flow Turbulence Combust 95, 755–774 (2015). https://doi.org/10.1007/s10494-015-9632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9632-2

Keywords

Navigation