Skip to main content
Log in

Numerical Simulation of Turbulent Pipe Flow Through an Abrupt Axisymmetric Constriction

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Turbulent flow through an abrupt axisymmetric contraction has been investigated in a computational study. The full three-dimensional Navier-Stokes equations have been solved in cylindrical coordinates. The ring-like obstruction was accounted for by an immersed boundary method implemented in an open source code. The results were compared with data from an experimental study and a surprisingly good agreement was found in the separated-flow region downstream of the obstruction. A distinctly higher turbulence level was predicted upstream of the obstruction as compared with the measured data. Due to the imposed streamwise periodicity the simulated configuration mimicked a sequence of equally spaced obstructions and this periodicity gives rise to substantially higher turbulence levels than in a single-ring configuration. Particular attention was paid to the possible occurrence of mean-flow asymmetries, as frequently reported in planar-symmetric configuration. No sign of the Coanda effect was observed in the present study, for which a physical explanation was provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mittal, R, Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  2. Orlandi, P.: Fluid Flow Phenomena: A Numerical Toolkit. Kluwer Academic Publishers (2000)

  3. Orlandi, P.: Source codes in the book Fluid Flow Phenomena: A Numerical Toolkit. http://dma.ing.uniroma1.it/users/orlandi/resume.html. Accessed 4 Sept 2007

  4. Nygård, F., Andersson, H.I.: On pragmatic parallelization of a serial Navier-Stokes solver in cylindrical coordinates. Int J Num Meth Heat Fluid Flow 22, 503–511 (2012)

    Article  Google Scholar 

  5. Morrison, G.L., DeOtte, R.E. Jr., Nail, G.H., Panak, D.L.: The flow field inside an orifice flow meter. Chem. Eng. Prog. 86, 75–80 (1990)

    Google Scholar 

  6. Morrison, G.L., DeOtte, R.E. Jr., Nail, G.H., Panak, D.L.: Mean velocity and turbulence fields inside a β = 0.50 orifice flowmeter. AIChE J. 39, 745–756 (1993)

    Article  Google Scholar 

  7. Durst, F., Wang, A.B.: Experimental and numerical investigation of the axisymmetric, turbulent pipe flow over a wall-mounted thin obstacle. In: Seventh Symposium on Turbulent Shear Flows, paper no. 10–14, pp. 10.4.1–10.4.6 (1989)

  8. Giovannini, A., Gagnon, Y.: Vortex simulation of axisymmetrical flows in cylindrical geometries. Part II: application to pipes incorporating an orifice plate. J. Therm. Sci. 4, 221–228 (1995)

    Article  Google Scholar 

  9. Vetél, J., Garon, A., Pelletier, D., Farinas, M.I.: Asymmetry and transition to turbulence in a smooth axisymmetric constriction. J. Fluid Mech. 607, 351–386 (2008)

    Article  MATH  Google Scholar 

  10. Varghese, S.S., Frankel, S.H., Fisher, P.F.: Direct numerical simulation of stenotic flows. Part 1. Steady flow. J. Fluid Mech. 582, 253–280 (2007)

    Article  MATH  Google Scholar 

  11. Deshpande, M.D., Giddens, D.P.: Turbulence measurements in a constricted tube. J. Fluid Mech. 97, 65–89 (1980)

    Article  Google Scholar 

  12. Wang, A.B.: Strömungen in Röhren mit ringformigem Hindernis. PhD thesis, Der Technischen Fakultät der Universität Erlangen-Nürnberg (1991)

  13. Durst, F., Founti, M., Wang, A.B.: Experimental investigation of the flow through an axisymmetric constriction. In: André, J.C., Cousteix, J., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds.) Turbulent Shear Flows, vol. 6, pp. 328–350. Springer (1989)

  14. Makino, S., Iwamoto, K., Kawamura, H.: Turbulent structures and statistics in turbulent channel flow with two-dimensional slits. Int. J. Heat Fluid Flow 29, 602–611 (2008)

    Article  Google Scholar 

  15. El Khoury, G.K., Pettersen, B., Andersson, H.I., Barri, M.: Asymmetries in an obstructed turbulent channel flow. Phys. Fluids 22, 095103 (2010)

    Article  Google Scholar 

  16. Sobey, I.J., Drazin, P.G.: Bifurcation of two-dimensional channel flows. J. Fluid Mech. 171, 263–287 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Verzicco, R., Orlandi, P.: A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 96, 297–324 (1996)

    MathSciNet  Google Scholar 

  18. Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R., Nieuwstadt, F.T.M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 286, 175–209 (1994)

    Article  Google Scholar 

  19. Bakewell, H.P. Jr., Lumley, J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 1880–1889 (1967)

    Article  Google Scholar 

  20. Nygård, F., Andersson, H.I.: Numerical simulation of swirling flow. In: Skallerud, B., Andersson, H.I. (eds.) MekIT’09 Fifth national conference on Computational Mechanics, pp. 309–322. Tapir Academic Press (2009)

  21. Beam, R.M., Warming, R.F.: An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22, 87–110 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 123, 402–414 (1991)

    MathSciNet  Google Scholar 

  23. Rai, M.M., Moin, P.: Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96, 15–53 (1991)

    Article  MATH  Google Scholar 

  24. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  MATH  Google Scholar 

  25. Chorin, A.J.: On the convergence of discrete approximations to the Navier-Stokes equations. Math. Comput. 23, 341–353 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dorr, F.W.: The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev. 12, 248–263 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hockney, R.W.: The fast solution of Poisson equation using Fourier analysis. J. Assoc. Comput. Mach. 12, 95–113 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mohod-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: CTR Annual Research Briefs, pp. 317–327 (1997)

  30. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohod-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flow. Springer, New York (1983)

    Book  MATH  Google Scholar 

  32. White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, Singapore (1991)

    Google Scholar 

  33. Orlandi, P., Leonardi, S., Antonia, R.A.: Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279–305 (2006)

    Article  MATH  Google Scholar 

  34. Akselvoll, K., Moin, P.: An efficient method for temporal integration of the Navier-Stokes equations on confined axisymmetric geometries. J. Comput. Phys. 125, 454–463 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ferziger, J.H., Peric̀, M.: Computational Methods for Fluid Dynamics. Springer, Berlin, Heidelberg (2002)

    Book  MATH  Google Scholar 

  36. Gresho, P.M., Lee, R.L.: Don’t suppress the wiggles - they’re telling you something. Comput. Fluids 9, 223–253 (1981)

    Article  MathSciNet  Google Scholar 

  37. Leone, J.M.J., Gresho, P.M.: Finite element simulations of steady, two-dimensional, viscous incompressible flow over a step. J. Comput. Phys. 41, 167–191 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Su, M.D., Friedrich, R.: Numerical simulation of fully developed flow in a curved duct of rectangular cross-section. Int. J. Heat Mass Transfer 37, 1257–1268 (1994)

    Article  MATH  Google Scholar 

  39. Durst, F., Wang, A.B.: On the reattachment length of turbulent pipe flows with ring-typed obstacle. In: Ninth Symposium on Turbulent Shear Flows, paper no. P304, pp. 1–4 (1993)

  40. Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297–327 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cantwell, C.D., Baekley, D., Blackburn, H.M.: Transient growth analysis of flow through a sudden expansion in a circular pipe. Phys. Fluids 22, 034101 (2010)

    Article  Google Scholar 

  42. Sanmiguel-Rojas, E., del Pino, C., Gutiérrez-Montes, C.: Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion. Phys. Fluids 22, 71–702 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nygård.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygård, F., Andersson, H.I. Numerical Simulation of Turbulent Pipe Flow Through an Abrupt Axisymmetric Constriction. Flow Turbulence Combust 91, 1–18 (2013). https://doi.org/10.1007/s10494-013-9447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9447-y

Keywords

Navigation