Skip to main content
Log in

Break-Up of Aerosol Agglomerates in Highly Turbulent Gas Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Agglomerate aerosols in a turbulent flow may be subjected to very high turbulent shear rates which through the generation of lift and drag can overcome the adhesive forces binding the constituents of an agglomerate together and cause it to break-up. This paper presents an analysis of the experimental measurements of the breakup of agglomerates between 0.1–10 μm in size, in a turbulent pipe flow followed by an expansion zone with a Reynolds numbers in the range 105 to 107. The analysis shows that even in wall bounded turbulence, the high turbulent shear stresses associated with the small scales of turbulence in the core can be the main source of breakup preceding any break-up that may occur by impaction at the wall. More importantly from these results, a computationally fast and efficient solution is obtained for the General Dynamic Equation (GDE) for agglomerate transport and breakup in highly turbulent flow. Furthermore the solution for the evolution of the aerosol size distribution is consistent with the experimental results. In the turbulent pipe flow section, the agglomerates are exposed continuously to turbulent shear stresses and experience more longer term breakup than in the expansion zone (following the pipe flow) where the exposure time is much less and break-up occurs instantaneously under the action of very high local turbulent shear stresses. The validity of certain approximations made in the model is considered. In particular, the inertia of the agglomerates characterised by a Stokes Number from 0.001 for the smallest particles up to 10 for 10 μm particles and the fluctuations of the turbulent shear stresses are important physical phenomena which are not accounted for in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Falkovich, G., Fouxon, A., Stepanov, M.G.: Acceleration of rain initiation by cloud turbulence. Nature 419, 151–154 (2002)

    Article  Google Scholar 

  2. Kusters, K.A.: The influence of turbulence on aggregation of small particles in agitated vessel. PhD thesis. Eindhoven University of Technology, The Netherlands (1991)

  3. Marchisio, D., Vigil, D., Fox, R.: Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chem. Eng. Sci. 58(15), 3337–3351 (2003)

    Article  Google Scholar 

  4. Voss, A., Finlay, W.H.: Deagglomeration of dry powder pharmaceutical aerosols. Int. J. Pharm. 248(1–2), 39–50 (2002)

    Article  Google Scholar 

  5. Lasheras, J.C., Eastwood, C., Martinez-Bazan, C., Montanes, J.L.: A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Int. J. Multiphas. Flow 28(2), 247–278 (2002)

    Article  MATH  Google Scholar 

  6. Ammar, Y.: Turbulent agglomeration and break-up of nuclear aerosols. PhD thesis. Newcastle University, UK (2008)

  7. Lind, T., Ammar, Y., Dehbi, A., Guentay, S.: De-agglomeration mechanisms of TiO2 aerosol agglomerates in PWR steam generator tube rupture conditions. Nucl. Eng. Des. 240(8), 2046–2053 (2010)

    Article  Google Scholar 

  8. Sonntag, R.C., Russel, W.B.: Structure and breakage of flocs subjected to fluid stresses, I. Shear experiments. J Colloid Interface Sci 113, 399–413 (1986)

    Article  Google Scholar 

  9. Pietsch, W.: Agglomeration Processes: Phenomena, Technologies, Equipment. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  10. Ramkrishna, D.: Population Balances: Theory and Applications to Particular Systems in Engineering. Academic Press, San Diego (2000)

    Google Scholar 

  11. Kramer, T.A., Clark, M.M.: Incorporation of aggregate breakup in the simulation of orthokinetic coagulation. J. Colloid Interface Sci. 216(1), 116–126 (1999)

    Article  Google Scholar 

  12. Luo, H., Svendsen, H.F.: Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42(5), 1225–1233 (1996)

    Article  Google Scholar 

  13. Coulaloglou, C.A., Tavlarides, L.L.: Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci. 32(11), 1289–1297 (1977)

    Article  Google Scholar 

  14. Tambo, N., Watanabe, Y.: Physical aspect of flocculation process - I: Fundamental treatise. Water Res. 13(5), 429–439 (1979)

    Article  Google Scholar 

  15. Potanin, A.A.: On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow. J. Colloid Interface Sci. 157(2), 399–410 (1993)

    Article  Google Scholar 

  16. Babler, M.U., Morbidelli, M., Baldyga, J.: Modelling the breakup of solid aggregates in turbulent flows. J. Fluid Mech. 612, 261–289 (2008)

    Article  MathSciNet  Google Scholar 

  17. Fair, G.M., Gemmell, R.S.: Mathematical model of coagulation. J. Coll. Sci. 19, 360–372 (1964)

    Article  Google Scholar 

  18. Grabenbauer, G.C., Glatz, C.E.: Protein precipitation-analysis of particle size distribution and kinetics. Chem. Eng. Commun. 12(1), 203–219 (1981)

    Article  Google Scholar 

  19. Shiga, S., Furuta, F.: Processibility of EPR in an internal mixer (II)—morphological changes of carbon black agglomerate during mixing. Rubber Chem. Technol. 58(1), 1–22 (1985)

    Google Scholar 

  20. Valentas, K.J., Amundson, N.R.: Breakage and coalescence in dispersed phase systems. Ind. Eng. Chem. Fundam. 5(4), 533–542 (1966)

    Article  Google Scholar 

  21. Collins, S.B., Knudsen, J.G.: Drop-size distributions produced by turbulen pipe flow of immiscible liquids. AIChE J. 16(6), 1072–1080 (1970)

    Article  Google Scholar 

  22. Chatzi, E.G., Gavrielides, A.D., Kiparissides, C.: Generalized model for prediction of the steady-state drop size distributions in batch stirred vessels. Ind. Eng. Chem. Res. 28(11), 1704–1711 (1989)

    Article  Google Scholar 

  23. Peng, S.J., Williams, R.A.: Direct measurement of floc breakage in flowing suspensions. J. Colloid Interface Sci. 166(2), 321–332 (1994)

    Article  Google Scholar 

  24. Kumar, S., Kumar, R., Gandhi, K.S.: Alternative mechanisms of drop breakage in stirred vessels. Chem. Eng. Sci. 46(10), 2483–2489 (1991)

    Article  Google Scholar 

  25. Hesketh, R.P., Etchells, A.W., Russell, T.W.F.: Bubble breakage in pipeline flow. Chem. Eng. Sci. 46(1), 1–9 (1991)

    Article  Google Scholar 

  26. Tsouris, C., Tavlarides, L.L.: Breakage and coalescence models for drops in turbulent dispersions. AIChE J. 40(3), 395–406 (1994)

    Article  Google Scholar 

  27. Kostoglou, M., Dovas, S., Karabelas, A.J.: On the steady-state size distribution of dispersions in breakage processes. Chem. Eng. Sci. 52(8), 1285–1299 (1997)

    Article  Google Scholar 

  28. Diemer, R.B., Olson, J.H.: A moment methodology for coagulation and breakage problems: part 3–generalized daughter distribution functions. Chem. Eng. Sci. 57(19), 4187–4198 (2002)

    Article  Google Scholar 

  29. Peterson, T.W.: Similarity solutions for the population balance equation describing particle fragmentation. Aerosol Sci. Tech. 5(1), 93–101 (1986)

    Article  Google Scholar 

  30. Ziff, R.M.: New solutions to the fragmentation equation. J. Phys. A- Math. Gen. 24(12), 2821–2828 (1991)

    Article  MathSciNet  Google Scholar 

  31. Diemer, J.B.R., Olson, J.H.: A moment methodology for coagulation and breakage problems: part 1–analytical solution of the steady-state population balance. Chem. Eng. Sci. 57(12), 2193–2209 (2002)

    Article  Google Scholar 

  32. Diemer, J.R.B., Spahr, D.E., Olson, J.H., Magan, R.V.: Interpretation of size reduction data via moment models. Powder Technol. 156(2–3), 83–94 (2005)

    Article  Google Scholar 

  33. Smith, M., Matsoukas, T.: Constant-number Monte Carlo simulation of population balances. Chem. Eng. Sci. 53(9), 1777–1786 (1998)

    Article  Google Scholar 

  34. Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretization–I. A fixed pivot technique. Chem. Eng. Sci. 51(8), 1311–1332 (1996)

    Article  Google Scholar 

  35. Hill, P.J., Ng, K.M.: New discretization procedure for the agglomeration equation. AIChE J. 42(3), 727–741 (1996)

    Article  Google Scholar 

  36. Vanni, M.: Discretization procedure for the breakage equation. AIChE J. 45(4), 916–919 (1999)

    Article  Google Scholar 

  37. McGraw, R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Tech 27(2), 255–265 (1996)

    Google Scholar 

  38. Bakhtar, F., Mohammadi, T.M.T.: An investigation of two-dimensional flows of nucleating and wet steam by the time-marching method. Int. J. Heat Fluid Flow 2(1), 5–18 (1980)

    Article  Google Scholar 

  39. Moheban, M., Young, J.B.: A study of thermal nonequilibrium effects in low-pressure wet-steam turbines using a blade-to-blade time-marching technique. Int. J. Heat Fluid Flow 6(4), 269–278 (1985)

    Article  Google Scholar 

  40. White, A.J., Young, J.B.: Time-marching method for the prediction of two-dimensional, unsteadyflows of condensing steam. J. Propuls. Power 9(4), 579–587 (1993)

    Article  Google Scholar 

  41. Skillings, S.A., Jackson, R.: A robust “time-marching” solver for one-dimensional nucleating steam flows. Int. J. Heat Fluid Flow 8(2), 139–144 (1987)

    Article  Google Scholar 

  42. Young, J.B.: Two-dimensional nonequilibrium wet steam calculations for nozzles and turbine cascades. J. Turbomach. 114, 569 (1992)

    Article  Google Scholar 

  43. Hagmeijer, R., Ijzermans, R.H.A., Put, F.: Solution of the general dynamic equation along approximate fluid trajectories generated by the method of moments. Phys. Fluid 17(5), 056101–056112 (2005)

    Article  Google Scholar 

  44. Wengeler, R., Nirschl, H.: Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J. Colloid Interface Sci. 306(2), 262–273 (2007)

    Article  Google Scholar 

  45. Zumaeta, N., Cartland-Glover, G.M., Heffernan, S.P., Byrne, E.P., Fitzpatrick, J.J.: Breakage model development and application with CFD for predicting breakage of whey protein precipitate particles. Chem. Eng. Sci. 60(13), 3443–3452 (2005)

    Article  Google Scholar 

  46. Iliopoulos, I., Hanratty, T.J.: Turbulent dispersion in a non-homogeneous field. J. Fluid Mech. 392, 45–71 (1999)

    Article  MATH  Google Scholar 

  47. Dehbi, A.: A CFD model for particle dispersion in turbulent boundary layer flows. Nucl. Eng. Des. 238(3), 707–715 (2008)

    Article  Google Scholar 

  48. Soldati, A.: Particles turbulence interactions in boundary layers. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 85(10), 683–699 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Marchisio, D.L., Soos, M., Sefcik, J., Morbidelli, M.: Role of turbulent shear rate distribution in aggregation and breakage processes. AIChE J. 52(1), 158–173 (2006)

    Article  Google Scholar 

  50. Abrahamson, J.: Collision rates of small particles in a vigorously turbulent fluid. Chem. Eng. Sci. 30, 1371–1379 (1975)

    Article  Google Scholar 

  51. Saffman, P.G., Turner, J.S.: On the collision of drops in turbulent clouds. J. Fluid Mech. 1(01), 16–30 (1956)

    Article  MATH  Google Scholar 

  52. Tennekees, H., Lumley, J.L.: A First Course in Turbulence. The Massachusetts Institute of Technology, US (1972)

  53. Dreeben, T.D., Pope, S.B.: Probability density function/Monte Carlo simulation of near-wall turbulent flows. J. Fluid Mech. 357, 141–166 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Antonia, R.A., Teitel, M., Kim, J., Browne, L.W.B.: Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236, 579–605 (1992)

    Article  Google Scholar 

  55. Fan, L.S. and Zhu, C.: Principles of Gas-Solid Flows: Cambridge Series in Chemical Engineering. Cambridge University Press, UK (1998)

    Google Scholar 

  56. Kapteyn, J.C.: Skew frequency curves in biology and statistics. Mol. Gen. Genet. 19(3), 205–206 (1918)

    Google Scholar 

  57. Aitchison, J., Brown, J.A.C.: The Lognormal Distribution. University Press, UK (1963)

    Google Scholar 

  58. Housiadas, C., Drossinos, Y.: Thermophoretic deposition in tube flow. Aerosol Sci. Tech 39(4), 304–318 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmine Ammar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammar, Y., Dehbi, A. & Reeks, M.W. Break-Up of Aerosol Agglomerates in Highly Turbulent Gas Flow. Flow Turbulence Combust 89, 465–489 (2012). https://doi.org/10.1007/s10494-012-9398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9398-8

Keywords

Navigation