Skip to main content
Log in

Large Eddy Simulation of the Sensitivity of Vortex Breakdown and Flame Stabilisation to Axial Forcing

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effect of axial forcing on the flame/vortex breakdown interaction is studied, with particular focus on the Precessing Vortex Core (PVC). Large Eddy Simulation (LES), together with a filtered flamelet model describing the subgrid combustion, is performed to study a lean premixed flame undergoing mass flow fluctuations in a wide range of frequencies and amplitude. In average, forcing at frequencies lower than the PVC characteristic frequency moves the recirculation zone upstream the combustor in the premixing tube, while higher frequencies do not relevantly affect the flow/flame. With the help of Proper Orthogonal Decomposition (POD) a detailed analysis of the dynamics of the central recirculation zone (CRZ) is performed showing how the excitation at lower frequencies weakens the PVC and allows the flame to propagate upstream. Extended POD is also applied to illustrate the flow/flame interactions during the excitation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Pror. Energy Combust. Sci. 27, 431–481 (2001)

    Article  Google Scholar 

  2. Lieuwen, T.: Introduction: combustion dynamics in Lean-Premixed Prevaporized (LPP) gas turbines. J. Propuls. Power 19(5), 721 (2003)

    Article  Google Scholar 

  3. Candel, S.: Combustion dynamics and control: progresses and challenges. Proc. Combust. Inst. 29, 1–28 (2002)

    Article  Google Scholar 

  4. Balachandran, R., et al.: Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame. 143(1–2), 37–55 (2005)

    Article  Google Scholar 

  5. Shanbhogue, S., Shin, D.H., Hemchandra, S., Plaks, D., Lieuwen, T.: Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32, 1787–1794 (2009)

    Article  Google Scholar 

  6. Paschereit, C.O., Gutmark, E., Weisenstein, W.: Coherent structures in swirling flows and their role in acoustic combustion control. Phys. Fluids 11(9), 2667–2678 (1999)

    Article  MATH  Google Scholar 

  7. Kang, D.M., Culick, F.E.C., Ratner, A.: Combustion dynamics of a low-swirl combustor. Combust. Flame 151, 412–425 (2007)

    Article  Google Scholar 

  8. Thumuluru, S.K., Lieuwen, T.: Characterization of acoustically forced swirl flame dynamics. Proc. Combust. Inst. 32, 2893–2900 (2009)

    Article  Google Scholar 

  9. Külsheimer, C., Büchner, H.: Combustion dynamics of turbulent swirling flames. Combust. Flame 131, 70–84 (2002)

    Article  Google Scholar 

  10. Palies, P., Durox, D., Schuller, T., Candel, S.: The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157, 1698–1717 (2010)

    Article  Google Scholar 

  11. Bellows, B.D., Bobba, M.K., Forte, A., Seitzman, J.M., Lieuwen, T.: Flame transfer function saturation mechanisms in a swirl-stabilized combustor. Proc. Combust. Inst. 31, 3181–3188 (2007)

    Article  Google Scholar 

  12. Coats, C.M.: Coherent structures in combustion. Pror. Energy Combust. Sci. 22, 427–509 (1996)

    Article  Google Scholar 

  13. Syred, N.: A review of oscillation mechanism and the role of the precessing vortex core (PVC) in swirl combustion system. Pror. Energy Combust. Sci. 32, 93–161 (2006)

    Article  Google Scholar 

  14. Duwig, C., Fuchs, L.: Large Eddy Simulation of vortex breakdown/flame interaction. Phys. Fluids 19, 075103 (2007)

    Article  Google Scholar 

  15. Anacleto, A., et al.: Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust. Sci. Technol. 175, 1369–1388 (2003)

    Article  Google Scholar 

  16. Alekseenko, S.V., et al.: Effect of axisymmetric forcing on the structure of a swirling turbulent jet. Int. J. Heat Fluid Flow 29, 1699–1715 (2008)

    Article  Google Scholar 

  17. Wang, S., Hsieh, S.Y., Yang, V.: Unsteady flow evolution in swirl injector with radial entry. II. External excitation. Phys. Fluids 17, 045107 (2005)

    Article  Google Scholar 

  18. Khalil, S., Hourigan, K., Thompson, M.C.: Response of unconfined vortex breakdown to axial pulsing. Phys. Fluids 18, 038102 (2006)

    Article  Google Scholar 

  19. Lacarelle, A., et al.: Spatio-temporal characterization of a conical swirler flow field under strong forcing. J. Eng. Gas Turbine Power 131, 031504, 12 pp. (2009)

  20. Giacque, A., Selle, L., Gicquel, L., Poinsot, T., Buechner, H., Kauffmann, P., Krebs, W.: System identification of a large-scale swirled partially premixed combustor using LES and measurements. J. Turbul. 6(21), 1–20 (2005). doi:10.1080/14685240512331391985

    Article  MathSciNet  Google Scholar 

  21. Angelberger, C., Veynante, D., Egolfopoulos, F.: LES of chemical and acoustic forcing of a premixed dump combustor. Flow Turbul. Combust. 65, 205–222 (2000)

    Article  MATH  Google Scholar 

  22. Roux, S., Lartigue, G., Poinsot, T., Meier, U., Berát, C.: Studies of mean and oscillating flow in a swirled combustor using experiments, acoustic analysis and Large Eddy Simulation. Combust. Flame 141, 40–54 (2005)

    Article  Google Scholar 

  23. Roux, A., Gicquel, L.Y.M., Sommerer, Y., Poinsot, T.J.: Large eddy simulation of mean and oscillating flow in a side-dump ramjet combustor. Combust. Flame 152, 154–176 (2008)

    Article  Google Scholar 

  24. Duwig, C., Fuchs, L.: Study of flame stabilization in a swirling combustor using a new flamelet formulation. Combust. Sci. Technol. 177, 1485 (2005)

    Google Scholar 

  25. Duwig, C., Fuchs, L., Griebel, P., Siewert, P., Boschek, E.: Study of a confined turbulent jet: influence of combustion and pressure on the flow. AIAA J. 45, 624 (2007)

    Article  Google Scholar 

  26. Duwig, C.: Study of a filtered flamelet formulation for Large Eddy Simulation of premixed turbulent flames. Flow Turbul. Combust. 79(4), 433–454 (2007)

    Article  MATH  Google Scholar 

  27. Duwig, C.: A filtered approach for simulation of unsteady laminar premixed flames. Combust. Theory Model. 13(2), 251–268 (2009)

    Article  MATH  Google Scholar 

  28. Cala, C., Fernandes, E.C., Heitor, M.V., Shtork, S.I.: Coherent structures in unsteady swirling jet flow. Exp. Fluids 40, 267–276 (2006)

    Article  Google Scholar 

  29. Stöhr, M., Sadanandan, R., Meier, W.: Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proceed. Comb. Inst. 32, 2952–2932 (2009)

    Google Scholar 

  30. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  31. Duwig, C., Iudiciani, P.: Extended proper orthogonal decomposition analysis of flame/acoustic interaction. Flow Turbul. Combust. 84(1), 25–47 (2010)

    Article  MATH  Google Scholar 

  32. Iudiciani, P., Duwig, C., Hosseini, S.M., Szazs, R.Z., Fuchs, L., Gutmark, E.J., Lantz, A., Collin, R., Aldén, M.: Proper orthogonal decomposition for experimental investigation of swirling flame instabilities. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, USA, 4–7 Jan 2010

  33. Kodal, A., et al.: Turbulence filter and POD analysis for velocity fields in lifted CH4-air diffusion flames. Flow Turbul. Combust. 70, 21–41 (2003)

    Article  MATH  Google Scholar 

  34. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Edwards, Philadelphia (2001)

    Google Scholar 

  35. Fureby, C.: ILES and LES of complex engineering turbulent flows. J. Fluids Eng. 129, 1514–1523 (2007)

    Article  Google Scholar 

  36. Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37(5), 544–556 (1999)

    Article  Google Scholar 

  37. Margolin, L.G., Rider, W.J., Grinstein, F.F.: Modeling turbulent flow with implicit LES. J. Turbul. 7(15), 1–27 (2006). doi:10.1080/14685240500331595

    MathSciNet  Google Scholar 

  38. Drikakis, D., Fureby, C., Grinstein, F.F., Youngs, D.: Simulation of transition and turbulence decay in the Taylor–Green vortex. J. Turbul. 8(20) (2007)

  39. Jang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202 (1996)

    Article  MathSciNet  Google Scholar 

  40. Fureby, C.: A comparison of flamelet LES models for premixed turbulent combustion. 44th AIAA Aerospace Sciences Meeting and Exhibit, RENO, NV, AIAA Pap. 2006-155 (2006)

  41. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for Large Eddy Simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)

    Google Scholar 

  42. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for Large Eddy Simulation of turbulent premixed combustion. Phys. Fluids 12, 1843 (2000)

    Article  Google Scholar 

  43. Fureby, C.: A fractal flame-wrinkling Large Eddy Simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593 (2005)

    Article  Google Scholar 

  44. Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86, 311 (1991)

    Article  Google Scholar 

  45. Gullbrand, J., Bai, X.S., Fuchs, L.: High-order Cartesian grid method for calculation of incompressible turbulent flows. Int. J. Numer. Methods Fluids 36, 687 (2001)

    Article  MATH  Google Scholar 

  46. Smith, T., Moehlis, J., Holmes, P.: Low-dimensional modelling of turbulence using the proper orthogonal decomposition. A tutorial. Nonlinear Dyn. 41, 275–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sirovich, L.: Turbulence and the dynamics of coherent structures. Part 1: coherent structures. Quart. App. Math. XLV(3), 561–571 (1987)

    MathSciNet  Google Scholar 

  48. Borée, J.: Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp. Fluids 35, 188–192 (2003)

    Article  Google Scholar 

  49. Maurel, S., Borée, J., Lumley, J.L.: Extended proper orthogonal decomposition: application to jet/vortex interaction. Flow Turbul. Combust. 67, 125–136 (2001)

    Article  MATH  Google Scholar 

  50. Perret, L., Delville, J., Manceau, R., Bonnet, J.P.: Turbulent inflow conditions for large-eddy simulation based on low-order empirical model. Phys. Fluids 20, 075107 (2008)

    Article  Google Scholar 

  51. Aubry, N.: On the hidden beauty of proper orthogonal decomposition. Theor. Comput. Fluid Dyn. 2, 339–352 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Iudiciani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iudiciani, P., Duwig, C. Large Eddy Simulation of the Sensitivity of Vortex Breakdown and Flame Stabilisation to Axial Forcing. Flow Turbulence Combust 86, 639–666 (2011). https://doi.org/10.1007/s10494-011-9327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-011-9327-2

Keywords