Skip to main content
Log in

Improved Boundary Conditions for the DNS of Reacting Subsonic Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper, we develop a method of prescribing time dependent boundary conditions for reacting flows. The method builds on earlier results, and derives from a linearization of the flow field around a base state. The base state is specified in terms of the flow dilatation, and we establish a general expression for the dilatation in reacting flows at low Mach number. This expression is then used to derive acoustically transparent boundary conditions. The utility of the approach is demonstrated via a number of laminar flame calculations, ranging in complexity from single step chemistry to a multi-step methane mechanism. The accuracy of the resulting solutions is found to be superior to those obtained using other means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strikwerda, J.: Initial boundary value problems for incompletely parabolic systems. Commun. Pure Appl. Math. 30, 797–822 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gustafsson, B., Sundström, A.: Incompletely parabolic problems in fluid dynamics. SIAM J. Appl. Math. 35, 343–357 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dutt, P.: Stable boundary conditions and difference schemes for Navier-Stokes equations. SIAM J. Numer. Anal. 25, 245–267 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tsynkov, S.: Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 27, 465–532 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ryaben‘kii, V., Tsynkov, S.: An application of the difference potentials method to solving external problems in CFD. Tech. Rep. 110338, NASA Technical Memorandum

  6. Thompson, K.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rudy, D., Strikwerda, J.: A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations. J. Comput. Phys. 36, 55–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hedstrom, G.: Nonreflecting boundary conditions for nonlinear hyperbolic systems. J. Comput. Phys. 30, 222–237 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Prosser, R.: Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows I: inviscid flows. J. Comput. Phys. 207, 736–768 (2005)

    Article  MATH  Google Scholar 

  10. Grinstein, F.: Open boundary conditions in the simulation of subsonic turbulent shear flows. J. Comput. Phys. 115, 43–55 (1994)

    Article  MATH  Google Scholar 

  11. Colonius, T., Lele, S., Moin, P.: Boundary conditions for direct computation of aerodynamic sound generation. AIAA J. 31, 1574–1582 (1993)

    Article  MATH  Google Scholar 

  12. Hu, F.: On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys. 129, 201–219 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, F.: A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys. 173, 455–480 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baum, M., Poinsot, T., Thévenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 116, 247–261 (1994)

    Article  Google Scholar 

  15. Thevénin, D., Baum, M., Poinsot, T. (eds.): Direct Numerical Simulation for Turbulent Reacting Flows. Editions Technip, Paris (1996)

    Google Scholar 

  16. Sutherland, J., Kennedy, C.: Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191, 502–524 (2003)

    Article  MATH  Google Scholar 

  17. Yoo, C., Wang, Y., Trouvé, A., Im, H.: Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theory Model. 9, 617–646 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Prosser, R.: Towards improved boundary conditions for the DNS and LES of turbulent subsonic flows. J. Comput. Phys. 222, 469–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys 101, 104–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one dimensional flow. J. Comput. Phys. 121, 213–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Polifke, W., Wall, C., Moin, P.: Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow. J. Comput. Phys. 213, 437–449 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. McMurtry, P., Jou, W., Riley, J., Metcalfe, R.: Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA 24, 962–970 (1986)

    Article  Google Scholar 

  23. Williams, F.: Combustion Theory, 2nd ed. Addison Wesley, Menlo Park, California (1985)

    Google Scholar 

  24. Echekki, T., Chen, J.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)

    Article  Google Scholar 

  25. Asato, K., Nagata, H., Kawamura, T.: Extinction of premixed curved flames stabilized in a stagnation flow. In: Kuhl, A., Leyer, J., Borisov, A., Sirignano, W. (eds.) Dynamics of Deflagrations and Reactive Systems: Flames, pp. 161–175. AIAA (1989)

  26. Kee, R., Rupley, F.: Chemkin II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009, Sandia National Laboratories, Livermore, CA 94551 (1989)

  27. Prosser, R.: Assessment of numerical methods used in computational combustion. (2005, unpublished)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Prosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prosser, R. Improved Boundary Conditions for the DNS of Reacting Subsonic Flows. Flow Turbulence Combust 87, 351–376 (2011). https://doi.org/10.1007/s10494-010-9307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9307-y

Keywords

Navigation